版权声明:欢迎转载,请注明出处,谢谢。
到maven仓库查看适用的mysql驱动,5.7的没有,8.0兼容5.7的,所以选择8.0的驱动
INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES (值1, 值2, ...);
在服务器进行数据传输、数据存储和数据交换,就有可能产生数据故障。比如发生意外停机或存储介质损坏。这时,如果没有采取数据备份和数据恢复手段与措施,就会导致数据的丢失,造成的损失是无法弥补与估量的。
维表关联系列目录: 一、维表服务与Flink异步IO 二、Mysql维表关联:全量加载 三、Hbase维表关联:LRU策略 四、Redis维表关联:实时查询 五、kafka维表关联:广播方式 六、自定义异步查询
ERROR 1146 (42S02): Table ‘xxx’ doesn’t exist 可能是很多人都遇到的问题,尤其在数据库迁移或备份的时候
MySQL中DDL语句,即数据定义语言,用于创建、删除、修改、库或表结构,对数据库或表的结构操作。常见的有create,alter,drop等。这类语句通常会耗费很大代价,特别是对于大表做表结构变更。本篇文章会揭露各类DDL语句执行的详细情况。
继续上篇博客 事务特性及隔离问题。 我们来做一个关于隔离级别的实验,将演示各个级别导致的隔离问题。 我们先打开两个MySQL窗口,来模拟并发操作。
mysql 命令完全总结 /* 精心整理关于 mysql 的命令 By CS逍遥剑仙 www.csxiaoyao.com 数据库环境配置见 mysql配置总结.md 常用SQL用法见文件 sql代码总结.md */ mysql 命令完全总结 连接mysql 修改密码 用户管理 1 新建用户 2 用户权限管理 3 删除用户 数据库操作 1 连接数据库 2 显示数据库 3 创建数据库 4 SELECT操作 5 删除数据库 表操作 1 创建数据表 2 表字段操作 3 修改表名 4 删除数据表 5
在“集群”标签,勾选“使用集群”,然后定义三个分区。这里的分区实际指的是数据库实例,需要指定自定义的分区ID,数据库实例的主机名(IP)、端口、数据库名、用户名和密码。定义分区的目的是为了从某一个分区甚至某一个物理数据库读取和写入数据。一旦在数据库连接里面定义了数据库分区,就可以基于这个信息创建了一个分区schema。
Hive可以管理HDFS中的数据,可以通过SQL语句可以实现与MapReduce类似的同能,因为Hive底层的实现就是通过调度MapReduce来实现的,只是进行了包装,对用户不可见。 Hive对HDFS的支持只是在HDFS中创建了几层目录,正真的数据存在在MySql中,MYSQL中保存了Hive的表定义,用户不必关系MySQL中的定义,该层对用户不可见。Hive中的库在HDFS中对应一层目录,表在HDFS中亦对应一层目录,如果在对应的表目录下放置与表定义相匹配的数据,即可通过Hive实现对数据的可视化及查询等功能 综上所述,Hive实现了对HDFS的管理,通过MySQL实现了对HDFS数据的维度管理 Hive基本功能及概念 database table 外部表,内部表,分区表 Hive安装 1. MySql的安装(密码修改,远程用户登陆权限修改) 2. Hive安装获取,修改配置文件(HADOOP_HOME的修改,MySQL的修改) 3. 启动HDFS和YARN(MapReduce),启动Hive Hive基本语法: 1. 创建库:create database dbname 2. 创建表:create table tbname Hive操作: 1. Hive 命令行交互式 2. 运行HiveServer2服务,客户端 beeline 访问交互式运行 3. Beeline 脚本化运行 3.1 直接在 命令行模式下 输入脚本命令执行(比较繁琐,容易出错,不好归档) 3.2 单独保存SQL 命令到 文件,如etl.sql ,然后通过Beeline命令执行脚本 数据导入: 1. 本地数据导入到 Hive表 load data local inpath "" into table .. 2. HDFS导入数据到 Hive表 load data inpath "" into table .. 3. 直接在Hive表目录创建数据 Hive表类型: 1. 内部表: create table 表数据在表目录下,对表的删除会导致表目录下的数据丢失,需要定义表数据的分隔符。 2. 外部表: create external table 表目录下挂载表数据,表数据存储在其他HDFS目录上,需要定义表数据的分隔符。 3. 分区表:与创建内部表相同,需要定义分区字段及表数据的分隔符。在导入数据时需要分区字段,然后会在表目录下会按照分区字段自动生成分区表,同样也是按照目录来管理,每个分区都是单独目录,目录下挂载数据文件。 4. CTAS建表 HQL 1. 单行操作:array,contain等 2. 聚合操作:(max,count,sum)等 3. 内连接,外连接(左外,右外,全外) 4. 分组聚合 groupby 5. 查询 : 基本查询,条件查询,关联查询 6. 子查询: 当前数据源来源于 另个数据执行的结果,即当前 table 为临时数据结果 7. 内置函数: 转换, 字符串, 函数 转换:字符与整形,字符与时间, 字符串:切割,合并, 函数:contain,max/min,sum, 8. 复合类型 map(key,value)指定字符分隔符与KV分隔符 array(value)指定字符分隔符 struct(name,value) 指定字符分割与nv分隔符 9. 窗口分析函数 10. Hive对Json的支持
最近由于业务需求,需要将公有云RDS(业务库)的大表数据归档至私有云MySQL(历史库),以缩减公有云RDS的体积和成本。
mysql 命令完全总结 Write By CS逍遥剑仙 我的主页: www.csxiaoyao.com GitHub: github.com/csxiaoyaojianxian Email: sunjianfeng@csxiaoyao.com QQ: 1724338257 目录导航 mysql 命令完全总结 1. 连接mysql 2. 修改密码 3. 用户管理 3.1 新建用户 3.2 用户权限管理 3.3 删除用户 4. 数据库操作 4.
爱可生南区交付服务部 DBA 团队成员,主要负责 MySQL 故障处理以及平台技术支持。
在做数据导出之前,我们看一下已经完成的操作:数据分析阶段将指标统计完成,也将统计完成的指标放到Hive数据表中,并且指标数据存储到HDFS分布式文件存储系统。
本文来源:原创投稿 *爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。
创建数据库表: 创建一个表名为:employee,该表中含有id、name、sex、birthday、job字段
MySQL学习仓库Up-Up-MySQL,这是一个学习MySQL从入门实战到理论完善,再到精通的一个仓库,后面会把MySQL的学习资料上传上去!欢迎大家star与fork起来!
上篇文章我们介绍了mysql的安装目录和 数据存储目录是不同的,当create database时,会在数据存储目录下新建一个同名的数据库文件,进入指定数据库文件会有db.opt文件记录数据库的特点,字符集,比较规则等。当create table时,会在指定数据库目录下,建立同名的子表目录,里面有表结构文件表名.frm和表数据文件。
Sqoop - “SQL到Hadoop和Hadoop到SQL” sqoop是apache旗下一款"Hadoop和关系数据库服务器之间传送数据"的工具。 导入数据:MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统; 导出数据:从Hadoop的文件系统中导出数据到关系数据库mysql等。
作为一个后端工程师,想必没有人没用过数据库,跟我一起复习一下MySQL吧,本文是我学习《MySQL实战45讲》的总结笔记的第六篇,总结了MySQL的InnoDB引擎相关的实践使用问题。
说明:删除内容、释放空间但不删除定义,也就是数据表的结构还在。与drop不同的是,它只是清空表数据而已,它比较温柔。
“导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据(或者Avro、sequence文件等二进制数据)
在本文中,我将向大家展示如何在 MySQL 数据库中清空表的所有数据,并将主键重置为 1。这通常在开发或测试阶段非常有用,特别是当你需要重新开始并清空所有现有数据时。
MySQL 大表数据添加新字段 有时候我们在测试环境给一个表添加字段,但是在线上环境添加一个字段,却极其的慢。原因是线上的数据库一般会存有大量的数据(百万级,千万级),基本的添加字段方式在线上数据库已经不太合适了。 > alter table user add column flag tinyint(1) default 0; 基本添加方式,大量数据的表不推荐。执行加字段操作就会锁表,这个过程可能需要很长时间甚至导致服务崩溃。 解决方案 扩展新表方案 创建一个新表user_ext(id,user_id,f
我们来备份test数据库中的innodb_table表和isam_table表中id为10的数据
将已有的 Apollo 1.0 表数据导入 Apollo 2.0 表。目标库已经创建了 Apollo 2.0 的库表结构。2.0 版本比 1.0 版本多四个表: ApolloConfigDB.AccessKey ApolloConfigDB.ServiceRegistry ApolloPortalDB.SPRING_SESSION ApolloPortalDB.SPRING_SESSION_ATTRIBUTES
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/135615.html原文链接:https://javaforall.cn
数据库MySQL(思维导图) 目录 1、数据库基础 1.1、数据库技术的发展 1.2、数据库系统的组成 1.3、数据模型 1.4、关系数据库的规范化 2、MySQL简介 2.1、MySQL的特点 2.2、命令行连接MySQL 3、数据库操作 3.1、常见名词/概念 3.2、数据库常用对象 3.3、MySQL系统数据库 3.4、常见数据库操作 4、存储引擎及数据类型 4.1、常见的存储引擎 4.2、MySQL数据类型 5、操作数据表 6、MySQL基础 6.1、运算符 6.2、流程控制语句 7、表数据的增删改
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/138902.html原文链接:https://javaforall.cn
爱可生 DBA 成员,主要负责 MySQL 故障处理及 DMP 平台相关技术支持。追求技术,乐此不疲。
随着业务的发展,用户对系统需求变得越来越多,这就要求系统能够快速更新迭代以满足业务需求,通常系统版本发布时,都要先执行数据库的DDL变更,包括创建表、添加字段、添加索引、修改字段属性等。
Hive中的Null在底层是以“\N”来存储,而MySQL中的Null在底层就是Null,为了保证数据两端的一致性。在导出数据时采用–input-null-string和–input-null-non-string两个参数。导入数据时采用–null-string和–null-non-string。
环境准备 编译环境:Python3.7.0 编辑器:Pycharm 解释环境:Virtualenv python=3.7.0 1.新建Django项目 各个代码编辑器都支持 安装Django和Mysql pip3 install Django==1.11.7 #其他版本也可,Django后不加版本即可安装最新版 pip3 install pymysql 构建web应用 python3 manage.py startapp web 2.修改Django配置 DATABASES = { 'def
Gorm 是 golang 的一个 orm 框架,它提供了对数据库操作的封装,使用起来相当便利。所以如果对 mysql 使用操作不熟悉,建议也可以使用 gorm 框架操作 mysql 数据库。
前面说了innoDB表在mysql5.6.6之前存储在系统空间,5.6.6之后存储在独立的空间,表结构存储在.frm文件,里面记录着字符集,行规则等,表数据存储在.ibd里面,里面存储着数据和索引。
表数据单独存放成一个文件更容易管理,在我们执行drop table命令的时候,系统会直接删除这个文件,但如果是放在共享表空间中,即使表删掉空间也不会回收。
在删除sql语句中,写法如下:DELETE FROM ueb_logistics_rule_logs WHERE type=0 LIMIT 100; 凡是这样,delete带有where条件的,都不是真删除,只是MySQL给记录加了个删除标识,自然这样操作后表数据占有空间也不会变小了
SQL(Structured Query Language)是一种用于访问和操作关系型数据库的标准编程语言,是用于数据库查询和程序设计的语言。其主要功能包括数据查询、数据操作、事务控制、数据定义和数据控制等。
虽然不建议大家生产环境中MySQL用户可以远程连接,但是开发时还是可以的,使用GRANT可以创建用户,可以控制权限。GRANT 实际开发过程中经常会用到。
今天,探讨一个有趣的话题:MySQL 单表数据达到多少时才需要考虑分库分表?有人说 2000 万行,也有人说 500 万行。那么,你觉得这个数值多少才合适呢?
相信很多小伙伴们,在日常对接开发时,有很多大表在业务上并没有采取任何形式的切分,数据不停地往一张表里灌入,迟早有一天,磁盘空间报警。作为一个DBA,侧重点是对数据库的操作性能(大表增加字段/索引,QPS等)和存储容量加以考虑,我们会建议开发对数据库里的大表进行数据归档处理,例如将3个月内的订单表保留在当前表,历史数据切分后保存在归档表中,之后归档表从主库上移走以便腾出磁盘空间,并将其迁移至备份机中(有条件的可以将其转换为TokuDB引擎),以便提供大数据部门抽取至HDFS上。
修改mysql配置文件/etc/my.cnf 或 my.ini,在[mysqld]下添加
sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。
一般情况下使用 TiDB 单表大小为千万级别以上在业务中性能最优,但是在实际业务中总是会存在小表。例如配置表对写请求很少,而对读请求的性能的要求更高。TiDB 作为一个分布式数据库,大表的负载很容易利用分布式的特性分散到多台机器上,但当表的数据量不大,访问又特别频繁的情况下,数据通常会集中在 TiKV 的一个 Region 上,形成读热点,更容易造成性能瓶颈。
[MySQL学习笔记] 3.mysqldump命令详解 Part 2 -备份全库
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
领取专属 10元无门槛券
手把手带您无忧上云