首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

常见算法的时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

虽然我不懂算法,但是我知道关于算法的时间复杂度。比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表的意思!...常见的算法举例:遍历算法。 ? O(n^2) 就代表数据量增大 n 倍时,耗时增大 n 的平方倍,这是比线性更高的时间复杂度。...O(logn) 当数据增大 n 倍时,耗时增大 logn 倍(这里的 log 是以 2 为底的,比如,当数据增大 256 倍时,耗时只增大 8 倍,是比线性还要低的时间复杂度)。...常见的时间复杂度有:常数阶 O(1),对数阶 O(log2n),线性阶 O(n),线性对数阶 O(nlog2n),平方阶 O(n2),立方阶 O(n3),…,k 次方阶 O(nk),指数阶 O(2n)...常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见的算法时间复杂度举例。

8.5K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    时间复杂度O(n)和空间复杂度

    大O表示法有三个规则: 1.用常数1取代运行时间中的所有加法常数 2.只保留最高阶项 3.去除最高阶的常数 常数阶: var a = 1;//执行1次 var b = 2;//执行1次 console.log...对数阶: var a = 1;//执行1次 while (a n){ a *= 2; //执行了logn次 } 这段代码while里面要判断执行次数,假设执行次数是x那么要成立2^x > n...应该有人会觉得log的底数是10,而我们这边底数是2,但在算法里面,我们只会用数学的方法把n无限大去比较,所以不管底数是多少,算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。...(i + j); // 语句执行n*m次 }} 同样的,这边执行次数是n*m,用数学的方式n和m趋于无穷大的时候,n≈m,于是执行次数就是n^2,所以时间复杂度是O(n^2)。...而时间复杂度也是能比较的,单以这几个而言: O(1)n)n²)n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。

    77210

    n2n动态路由异地组网方案

    (0)前言及网络拓扑 首先简单说一下组网的拓扑: 此前在v站和我的博客 也有陆续发过一些异地组网的方法: 通过 N2N 组网并运行 OSPF 动态路由 on OpenWRT 用动态路由打通各 Virtual...,n2n + quagga-rip,方案只需一个带公网IP的服务器作握手/中继(也可以用n2n官网提供的[不推荐]),在网络环境较好的情况下基本握手后可以实现直接穿透。...一般同类的软件有zerotier, tinc, … 本人基本都用过,综合考虑使用n2n, 其它同类软件实现功能一样。...n2n 2.8 for OpenWRT 是OpenWRT交叉编译的脚本,也有打包好的ipk安装包,当然也可以用其它方法 安装完edge后,主要配置如下:(以拓扑中节点X为例) root@XMOPWRT...:~# cat /etc/n2n/edge.conf -d=tincn0 -c=myperfectn2n //与前面supernode配置的community(自定义字符串)一致 -a=10.193.111.14

    1.4K30

    网络之NAT 和N2N V**

    一、 N2N通信原理 1. NAT的原理 2. NAPT Address Restricted Cone NAT Symmetric NAT 3.关于内网穿透 二、 N2N组件及配置 1....多IDC间的网络互通 四、注意事项 N2N V** 应用指南 N2N 是一个P2P的开源V**项目,具有内网穿透成功率高,去中心化,流量加密,使用简单的特点, 在笔者公司内部已经有近3年的使用经验,实践证明...,N2N具备较为优秀的稳定性和安全性,,具备低成本替代专线需求的能力。...在笔者的实践经验中,N2N用在多IDC之间的网络互通,多IDC上容器网络的互通。 表现的都很出色。...一、 N2N通信原理 N2N 是基于P2P协议的加密2层专用网络, 使用UDP协议进行封包传输,使用UDP协议带来了高性能和便捷性,例如利用很多场景下不会封锁DNS的UDP端口来打通网络,例如UDP原生优于

    2.2K32

    c++ 字典顺序生成全排列,蛮力算法时间复杂度 Θ(n*n!)

    1,3,2,4...n (不是)                                         1,2,3,4...n (是) 1....(答案是NO)——PS:  数字越大,  越高       解:①  从右到左寻找第一个 “ 信号由(无或弱)到强突然转弱  ” 的位置 ,也就是底下指向 2 的红色箭头所属的位置       ② 取 ...不断的循环下去,  就可以不断的寻找下一个最大排列,其中必须给循环一个停止条件           ②  {1,2,3}全排列停止条件{3,2,1} ,    因为 {3,2,1}    字典顺序下一个最大排列...  ” 的位置 也就是指向 2 的红色箭头所属的位置           循环继续,一直运行到循环的停止条件       ③.2  期间遍历每个排列中的从右到左相邻两元素,不满足第一个 “ 信号由(无或弱...   {1,2,3}     {1,3,2}                                 说好的全排列呢?

    86820

    去掉 Attention 的 Softmax,复杂度降为 O (n)

    众所周知,尽管基于 Attention 机制的 Transformer 类模型有着良好的并行性能,但它的空间和时间复杂度都是 O(n2)\mathcal {O}(n^2) 级别的,nn 是序列长度,所以当...QKTQK^T 这一步我们得到一个 n×nn\times n 的矩阵,之后还要做一个 Softmax 对一个 1×n1\times n 的行向量进行 Softmax,时间复杂度是 O(n)O (n),但是对一个...n×nn\times n 矩阵的每一行做一个 Softmax,时间复杂度就是 O(n2)O (n^2) 如果没有 Softmax,那么 Attention 的公式就变为三个矩阵连乘 QK⊤V\boldsymbol...{QK^{\top} V},而矩阵乘法是满足结合率的,所以我们可以先算 K⊤V\boldsymbol {K^{\top} V},得到一个 d×dd\times d 的矩阵(这一步的时间复杂度是 O(d2n...)O (d^2n)),然后再用 QQ 左乘它(这一步的时间复杂度是 O(d2n)O (d^2n)),由于 d≪nd \ll n,所以这样算大致的时间复杂度只是 O(n)O (n) 对于 BERT base

    1.2K20

    建堆时间复杂度是o(n)

    容易混淆的认知,当你决策时候傻傻分不清楚 堆的定义:是一个完全二叉树,但不是二叉搜索树,也不是平衡的二叉树 后记:完全二叉树特点经过一次教训你记住了 当前节点和子节点关心是i 和2i 2i+1。...堆:有个步骤,建堆 和调整 建堆:Heap Building 建堆的时间复杂度就是O(n)。 up_heapify() ?...插入删除元素的时间复杂度也为O(log n)。 后记:链表基本操作 删除和删除,但是堆不一样,你遗忘记地方 建堆,然后基本操作删除和删除,这个之前根本没想道过建堆这个步骤。...时间复杂度: (3)堆的插入、删除元素的时间复杂度都是O(log n);https://stackoverflow.com/questions/9755721/how-can-building-a-heap-be-on-time-complexity...(4)建堆的时间复杂度是O(n); (5)堆排序的时间复杂度是O(nlog n); T(Heap Sort) = T(build Heap) + (N-1)*T(down_heapify)

    2.5K20

    2022-07-17:1、2、3...n-1、n、n、n+1、n+2... 在这个序列中,只有一个数字有重复(n)。 这个序列是无序的,找到重复数字n。 这个序

    2022-07-17:1、2、3...n-1、n、n、n+1、n+2...在这个序列中,只有一个数字有重复(n)。这个序列是无序的,找到重复数字n。这个序列是有序的,找到重复数字n。...= find_duplicate2(&mut arr2) { println!("未排序情况出错!...无序数组,找重复数// 时间复杂度O(N),额外空间复杂度O(1)// 用快慢指针fn find_duplicate(arr: &mut Vec) -> i32 { if arr.len...一个结论 return slow;}// 符合题目要求的、无序数组,找重复数// 时间复杂度O(N),额外空间复杂度O(1)// 用异或fn find_duplicate2(arr: &mut Vec...一个结论 return ans;}// 符合题目要求的、有序数组,找重复数// 时间复杂度O(logN),额外空间复杂度O(1)fn find_duplicate_sorted(arr: &mut

    82810

    求m的n次方(优化时间复杂度)

    卷哥心想这问的什么问题,过流程的吗? 面试官眉头紧皱: 看面试官的意思是对卷哥解法的时间复杂度不太满意,卷哥想了15分钟没想出来; 卷哥:卒 题解 正常循环求m的n次方,时间复杂度为O(n)。...如果为奇数n则时间复杂度为O(n/2-1),偶数n就是O(n/2) 代码如下: public int process(int m,int n){ int index = n/2,...上面我们是固定的两个值缩减,效率固定了就是O(n/2),我们再分析一下:求平方的m值是固定的,那我们能不能不固定两个值缩减,反正值固定,每一次平方后n/2这样对数的算法效率就很快了。...但是这种情况下如果有奇数n/2后则会漏掉一次平方的过程,所以如果n为奇数当前值就需要* m原始值一次。...} 步骤图: 最后r x base = 19683就等同我们上图余出来一个单个m值需要与结果值进行平方 这种方式的时间复杂度为O(logn),相对时间复杂度更低。

    86140

    究竟为什么,快速排序的时间复杂度是n*lg(n)? | 经典面试题

    规则三:“树的高度”的时间复杂度往往是O(lg(n))。 分析:树的总节点个数是n,则树的高度是lg(n)。 在一棵包含n个元素二分查找树上进行二分查找,其时间复杂度是O(lg(n))。...对一个包含n个元素的堆顶元素弹出后,调整成一个新的堆,其时间复杂度也是O(lg(n))。 第二大类:组合规则 通过简单规则的时间复杂度,来求解组合规则的时间复杂度。 例如:n个数冒泡排序。...最内层的swap 故,冒泡排序的时间复杂度为: O(n) * O(n) * O(1) = O(n^2) 又例如:TopK问题,通过建立k元素的堆,来从n个数中求解最大的k个数。...将m=lg(n)带入,得到: f(n)=lg(n)*n+2^(lg(n))*f(1)=n*lg(n)+n 故,快速排序的时间复杂度是n*lg(n)。 wacalei,有点意思哈!...总结 for循环的时间复杂度往往是O(n) 树的高度的时间复杂度往往是O(lg(n)) 二分查找的时间复杂度是O(lg(n)),快速排序的时间复杂度n*(lg(n)) 递归求解,未来再问时间复杂度,通杀

    1.5K30

    2023-11-04:用go语言,如果n = 1,打印 1*** 如果n = 2,打印 1*** 3*** 2*** 如果n =

    2023-11-04:用go语言,如果n = 1,打印 1*** 如果n = 2,打印 1*** 3*** 2*** 如果n = 3,打印 1*...** 3*** 2*** 4*** 5*** 6*** 如果n = 4,打印 1*...大体步骤如下: 1.读取输入的整数 n 表示行数。 2.初始化一个大小为 MAXN 的字节数组 space,用于存储打印结果。...最后,根据代码和描述的步骤分析,可以得出以下复杂度: • 时间复杂度:在循环中,每一次 fill 函数的时间复杂度为 O(n),insert 函数的时间复杂度为 O(1)。...因此,总的时间复杂度为 O(n)。 • 空间复杂度:除了输入和输出外,只使用了一个大小为 MAXN 的字节数组 space,因此额外的空间复杂度为 O(MAXN)。

    14440
    领券