内存管理模块管理系统的内存资源,它是操作系统的核心模块之一。主要包括内存的初始化、分配以及释放。
Apache Flink 基于 JVM 的高效处理能力,依赖于其对各组件内存用量的细致掌控。 考虑到用户在 Flink 上运行的应用的多样性,尽管社区已经努力为所有配置项提供合理的默认值,仍无法满足所有情况下的需求。 为了给用户生产提供最大化的价值, Flink 允许用户在整体上以及细粒度上对集群的内存分配进行调整。
在计算机系统中,变量、中间数据一般存放在系统存储空间中,只有实际使用的时候才将他们从存储空间调入到中央处理器内部进行计算。通常存储空间分为两类:内部存储空间和外部存储空间。对于电脑来讲,内部存储空间就是电脑的内存,外部存储空间就是电脑的硬盘。而对于单片机来讲,内部存储就是 RAM ,随机存储器。外部存储可以理解为 flash ,掉电不丢失。该篇文章的主题,内存管理,主要讨论的是关于 RAM 的管理。
如果你不能理解malloc之类内存分配器实现原理的话,那你可能写不出高性能程序,写不出高性能程序就很难参与核心项目,参与不了核心项目那么很难升职加薪,很难升级加薪就无法走向人生巅峰,没想到内存分配竟如此关键,为了走上人生巅峰你也要势必读完本文
内存超分,是指分配给虚拟机的内存总和大于实际可用的物理内存总数。这样做的前提是,虚拟机操作系统里的内存不可能一直处于用满的状态。
很早之前写了一篇图解虚拟内存的文章:真棒!20 张图揭开内存管理的迷雾,瞬间豁然开朗
在计算虚拟化大致可分为CPU虚拟化、内存虚拟化、I/O虚拟化,本期我们来聊聊内存虚拟化技术。在物理服务器中可以根据不同的计算需求配置不同容量的内存,如最常见的是配置256G以及512G。在虚拟化环境中这些内存会分配给不同的虚机使用。
前几天我发了一篇文章:在 4GB 物理内存的机器上,申请 8G 内存会怎么样?,但是当时写的比较匆忙,文章中只考虑关闭 swap 的情况,没有提及开启 swap 的情况,有读者希望我补充这部分内容。
Netty Review - NioServerSocketChannel源码分析
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
这篇文章其实之前发过,但是最近有位读者跟我反馈,我文章中的实验在 64 位操作系统、2 G 物理内存的场景,申请 8G 内存是没问题的,而他也是这个环境,为什么他就无法申请成功呢?
池化是一个抽象概念,这里主要了解一下Memory Pooling。C# 池化(Pooling)是一种内存管理技术,旨在提高性能和降低资源消耗。它涵盖多个方面,包括对象池、内存池和连接池等。池化技术在C#中广泛用于优化性能和资源利用率,特别是在需要频繁创建和销毁对象、分配内存或管理连接的应用程序中。
究其原因,监控系统计算的可用内存算法有偏差,他只关注了计算机的“实际”内存,忽略了计算机的虚拟内存。
https://www.cnblogs.com/poloyy/category/1806772.html
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
在硬件中,为了解决处理器与内存的速度矛盾,在两者之间使用了高速缓存,但也引入了新的问题:缓存一致性。
(以Flink 1.10为蓝本,Flink 1.10对之前的Flink版本的内存模型做了大量优化)
物理内存就是你的机器本身内存了(如内存条的大小)。物理内存就是CPU的地址线可以直接进行寻址的内存空间大小。比如8086只有20根地址线,那么它的寻址空间就是1MB,我们就说8086能支持1MB的物理内存,及时我们安装了128M的内存条在板子上,我们也只能说8086拥有1MB的物理内存空间。同理我们现在大部分使用的是32位的机子,32位的386以上CPU就可以支持最大4GB的物理内存空间了。
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
内存是计算机中必不可少的资源,因为 CPU 只能直接读取内存中的数据,所以当 CPU 需要读取外部设备(如硬盘)的数据时,必须先把数据加载到内存中。
内存管理是指操作系统或编程语言运行时环境对计算机系统中的内存资源进行分配、使用和回收的过程。其主要目标是有效地管理内存资源,以提供给程序足够的内存空间来存储和执行程序所需的数据和指令。内存管理的作用包括:
我们知道物理内存是以页为单位进行管理的,每个内存页大小默认是4K(大页除外)。申请物理内存时,一般都是按顺序分配的,但释放内存的行为是随机的。随着系统运行时间变长后,将会出现以下情况:
《Java虚拟机规范》中曾试图定义一种“Java内存模型”(Java Memory Model简称JMM)来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。Java内存模型是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式。JMM是围绕原子性,有序性、可见性展开。
内存泄漏原理 : 长生命周期对象 , 持有短生命周期对象的引用 , 并且是强引用持有 , GC 无法释放该短生命周期对象引用 , 造成 OOM ;
当我们安装或升级内存时,发现主板上有四个内存插槽,所以不知道该插入哪个内存插槽。事实上,理论上,任何一个内存插槽都可以正常使用。但是如果随意插上,未必能搭建双通道,搭建双通道也是有讲究的。那么双通道内存是什么意思呢?怎么安装?下面,安装者之家将为大家普及双通道内存的知识,并附上正确插入双通道内存的教程。希望这篇文章能对大家有所帮助。
内存问题在 C/C++ 程序中十分常见,比如缓冲区溢出,使用已经释放的堆内存,内存泄露等。
用free监控内存free是监控linux内存使用状况最常用的指令,看下面的一个输出
随着Java技术的广泛应用,内存溢出(Out of Memory Error)成为了Java程序开发中常见的问题之一。本文将深入探讨Java内存溢出的原因、预防方法和解决方案,帮助读者更好地理解和应对这一挑战。
说到共享内存,有过操作系统学习的童靴应该十分熟悉,往往聊到进程之间通信的4种方式时就能脱口而出(面试最常见的问题之一啊,哈哈哈~~):
大家生活中肯定都有这样的经验,那就是大众化的产品都比较便宜,但便宜的大众产品就是一个词,普通;而可以定制的产品一般都价位不凡,这种定制的产品注定不会在大众中普及,因此定制产品就是一个词,独特。
本文旨在梳理出Spark内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理基于Spark 2.1版本,阅读本文需要读者有一定的Spark和Java基础,了解RDD、Shuffle、JVM等相关概念。
操作系统适合管理大块内存,如一页(4096字节),不适合小块内存分配;不做内存池管理,容易产生内存碎片,会出现剩余内存够,但没有一块连续内存来分配,会引起操作系统把程序HOLD住来整理碎片的情况;
低端内存映射 : 内核启动过程中 , 将 " 低端内存 " 交给 " 引导内存分配器 " 管理 ,
在Java中,直接内存是一种不受Java堆管理的内存,它是通过调用本地方法分配的内存,通常位于Java堆外。直接内存的访问不需要通过Java虚拟机(JVM)的内存模型,因此可以减少一次内存拷贝,提高性能。这种内存通常由ByteBuffer.allocateDirect()方法分配。
比尔·盖茨在上世纪80年代说的“640K ought to be enough for anyone”
先来说说第一个问题:虚拟内存有什么作用?(如果你还不知道虚拟内存概念,可以看这篇:真棒!20 张图揭开内存管理的迷雾,瞬间豁然开朗)
内存条 : 操作系统 和 应用软件 运行在内存中 , 内存 对应的硬件就是 内存条 ,
在上篇文章 《深入理解 Linux 物理内存管理》中,笔者详细的为大家介绍了 Linux 内核如何对物理内存进行管理以及相关的一些内核数据结构。
内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量、队列等会自动从堆中申请内存。用户应用层代码也可以 FreeRTOS 提供的内存管理函数来申请和释放内存,本文学习一下 FreeRTOS 自带的内存管理。
本文来源:原创投稿 *爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。
在Java JVM系列文章中有朋友问为什么要JVM,Java虚拟机不是已经帮我们处理好了么?同样,学习Java内存模型也有同样的问题,为什么要学习Java内存模型。它们的答案是一致的:能够让我们更好的理解底层原理,写出更高效的代码。
内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。 内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。 memory leak会最终会导致out of memory! 内存溢出就是你要求分配的内存超出了系统能给你的,系统不能满足需求,于是产生溢出。 内存泄漏是指你向系统申请分配内存进行使用(new),可是使用完了以后却不归还(delete),结果你申请到的那块内存你自己也不能再访问(也许你把它的地址给弄丢了),而系统也不能再次将它分配给需要的程序。一个盘子用尽各种方法只能装4个果子,你装了5个,结果掉倒地上不能吃了。这就是溢出!比方说栈,栈满时再做进栈必定产生空间溢出,叫上溢,栈空时再做退栈也产生空间溢出,称为下溢。就是分配的内存不足以放下数据项序列,称为内存溢出. 以发生的方式来分类,内存泄漏可以分为4类: 1. 常发性内存泄漏。发生内存泄漏的代码会被多次执行到,每次被执行的时候都会导致一块内存泄漏。 2. 偶发性内存泄漏。发生内存泄漏的代码只有在某些特定环境或操作过程下才会发生。常发性和偶发性是相对的。对于特定的环境,偶发性的也许就变成了常发性的。所以测试环境和测试方法对检测内存泄漏至关重要。 3. 一次性内存泄漏。发生内存泄漏的代码只会被执行一次,或者由于算法上的缺陷,导致总会有一块仅且一块内存发生泄漏。比如,在类的构造函数中分配内存,在析构函数中却没有释放该内存,所以内存泄漏只会发生一次。 4. 隐式内存泄漏。程序在运行过程中不停的分配内存,但是直到结束的时候才释放内存。严格的说这里并没有发生内存泄漏,因为最终程序释放了所有申请的内存。但是对于一个服务器程序,需要运行几天,几周甚至几个月,不及时释放内存也可能导致最终耗尽系统的所有内存。所以,我们称这类内存泄漏为隐式内存泄漏。 从用户使用程序的角度来看,内存泄漏本身不会产生什么危害,作为一般的用户,根本感觉不到内存泄漏的存在。真正有危害的是内存泄漏的堆积,这会最终消耗尽系统所有的内存。从这个角度来说,一次性内存泄漏并没有什么危害,因为它不会堆积,而隐式内存泄漏危害性则非常大,因为较之于常发性和偶发性内存泄漏它更难被检测到
目录 学习目标 原理 分配 释放 代码 内存管理控制器 内存管理宏定义 内存管理数组 总结 ---- 学习目标 本节我们要来学习的是内存管理实验,主要用来解决的问题其实和C语言中数组遇到的问题类似,就是我们不知道到底需要多少内存,为了避免数组越界,我们只能定义一个很大的数组,但是在单片机这种“寸土寸金”的地方就很不现实了,所以我们必须引入C语言中的内存管理函数malloc和free了。 原理 我们采用的原理是分块式内存管理,主要就是通过内存管理表来得知哪些内存是空的
以交友平台用户中心的user表为例,单表数据规模达到千万级别时,你可能会发现使用用户筛选功能查询用户变得非常非常慢,明明查询命中了索引,但是,部分查询还是很慢,这时候,我们就需要考虑拆分这张user表了。
AntDB的内存管理在开发时,使用了内存上下文机制来实现内存管理。本文就从AntDB的内存上下文机制出发,解析内存上下文的实现原理。
我们知道redis的数据都保存在内存中,如何高效利用内存变得尤为重要。这里主要从内存消耗、管理内存的原理与方法、内存优化技巧三个方面来讲述如何高效实现内存的存储。今天仅描述内存消耗相关知识。
在嵌入式系统中,内存是十分有限而且是十分珍贵的,用一块内存就少了一块内存,而在分配中随着内存不断被分配和释放,整个系统内存区域会产生越来越多的碎片。
Java虚拟机规范中试图定义一种Java内存模型来屏蔽掉各种硬件和操作系统的内存访问差异,规定
领取专属 10元无门槛券
手把手带您无忧上云