首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

深度学习OCR文本识别

---- 以美团的OCR识别为例 基于深度学习OCR 文字是不可或缺的视觉信息来源。相对于图像/视频中的其他内容,文字往往包含更强的语义信息,因此对图像中的文字提取和识别具有重大意义。...检测器可以是传统机器学习模型(Adaboost、Random Ferns),也可以是深度卷积神经网络。...基于现有技术和美团业务涉及的OCR场景,我们在文字检测和文字行识别采用如图所示的深度学习框架。...基于深度学习的文字检测 对于美团的OCR场景,根据版面是否有先验信息(卡片的矩形区域、证件的关键字段标识)以及文字自身的复杂性(如水平文字、多角度),图像可划分为受控场景(如身份证、营业执照、银行卡)和非受控场景...基于上述试验,与传统OCR相比,我们在多种场景的文字识别上都有较大幅度的性能提升,如图19所示: 与传统OCR相比,基于深度学习OCR在识别率方面有了大幅上升。

7K20

深度学习】光学字符识别(OCR

什么是OCR 1)定义 OCR (Optical Character Recognition,光学字符识别)是指对图片中的文字进行查找、提取、识别的一种技术,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程...4)序列标注 一个深度双向循环神经网络是建立在卷积层的顶部,作为循环层。...(b)我们论文中使用的深度双向LSTM结构。合并前向(从左到右)和后向(从右到左)LSTM的结果到双向LSTM中。在深度双向LSTM中堆叠多个双向LSTM结果。...为了优化,使用ADADELTA自动计算每维的学习率。与传统的动量方法相比,ADADELTA不需要手动设置学习率。更重要的是,我们发现使用ADADELTA的优化收敛速度比动量方法快。...网络详细结构 7)结论 该模型在4个公共测试数据集上取得了较好的成绩,跟其它基于深度学习模型相比,具有明显提升。

6.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用深度学习的端到端文本OCR

    挑战性 在经历如何理解挑战之前,要面对OCR。 甚至在2012年深度学习蓬勃发展之前,就已经有许多OCR实现。...在这种情况下,机器学习OCR工具会大放异彩。 OCR问题中的挑战主要是由于手头OCR任务的属性而引起的。通常可以将这些任务分为两类: 结构化文本-键入文档中的文本。...在深度学习世界中,没有一种解决方案适用于所有人。将看到多种解决当前任务的方法,并将通过其中一种方法进行工作。 非结构化OCR任务的数据集 有许多可用的英语数据集,但是很难找到其他语言的数据集。...基于深度学习的方法对于非结构化数据表现更好。...Tesseract 4在基于LSTM网络(一种递归神经网络)的OCR引擎中添加了基于深度学习的功能,该引擎专注于行识别,但也支持Tesseract 3的传统Tesseract OCR引擎,该引擎通过识别字符模式进行工作

    2K20

    【AI in 美团】深度学习OCR中的应用

    本文将通过以OCR(光学字符识别)的场景来介绍深度学习在计算机视觉中的应用。 基于深度学习OCR 文字是不可或缺的视觉信息来源。...检测器可以是传统机器学习模型(Adaboost、Random Ferns),也可以是深度卷积神经网络。...基于现有技术和美团业务涉及的OCR场景,我们在文字检测和文字行识别采用如图7所示的深度学习框架。 ? 图7 基于深度学习OCR解决方案 后面将分别介绍文字检测和文字行识别这两部分的具体方案。...基于深度学习的文字检测 对于美团的OCR场景,根据版面是否有先验信息(卡片的矩形区域、证件的关键字段标识)以及文字自身的复杂性(如水平文字、多角度),图像可划分为受控场景(如身份证、营业执照、银行卡)和非受控场景...图19 传统OCR深度学习OCR性能比较 与传统OCR相比,基于深度学习OCR在识别率方面有了大幅上升。但对于特定的应用场景(营业执照、菜单、银行卡等),条目准确率还有待提升。

    2K20

    微信 OCR(2):深度序列学习助力文字识别

    此篇文章属于微信OCR技术介绍系列,着重介绍如何采用深度序列学习(deep sequence learning)方法实现端到端的文本串识别并应用于微信产品。...这种化整为零的方法是OCR深度学习出现之前的几十年里通用的方法,其流程如图2所示。...图3:基于过切分和动态规划得到文本串内容 从2012 年的ImageNet竞赛开始,深度学习首先在图像识别领域发挥出巨大威力。随着研究的深入,深度学习逐渐被应用到音频、视频以及自然语言理解领域。...如何利用深度学习来进行端到端的学习,并摒弃基于人工规则的中间步骤,以提升Sequence Learning的效果已经成为当前研究的热点。...本文主要对于深度序列学习OCR中的应用进行了综述总结,接下来将主要介绍这类技术在微信产品中的落地情况。

    8.5K50

    【Dev Club 分享】深度学习OCR 中的应用

    本期,我们邀请了 腾讯 TEG 技术工程师“文亚飞”,为大家分享《深度学习OCR中的应用》。 下面是分享实录整理: ---- 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作。...、LFW上取得了令人傲娇的表现,开启了深度学习在大规模数据训练和学习的浪潮。...针对OCR传统手法在应对复杂图文场景的不足,我们对文字检测和文字识别这两个关键步骤结合深度学习进行研究与开发。 二、文字检测 下图是2000张人脸、行人、文字的average image ?...深度学习抛弃了传统人工设计特征的方式,利用海量标定样本数据以及大规模GPU集群的优势让机器自动学习特征和模型参数,能一定程度上弥补底层特征与高层语义之间的不足。...近些年深度学习在人脸识别、目标检测与分类中达到了前所未有的高度,也开启了深度学习在文字分类的新浪潮。

    3.6K80

    Github:深度学习文本检测识别(OCR)精选资源汇总

    今天跟大家推荐一个Github项目,来自NAVER Clova AI Research的hwalsuklee同学汇总了近几年的基于深度学习进行文本检测、识别的论文、代码、数据集、教程资源,非常值得参考。...作者首先统计了深度学习OCR方向的文献: 可见这个方向基于深度学习的技术是大势所趋。...文本检测汇总 在下图表格中,IC3代表该算法在ICDAR2013数据集上的精度,IC15代表该算法在ICDAR2015数据集上的精度,PRJ代表项目主页,CAFFE/TF等代表使用深度学习框架Caffe...52CV曾经专门解读过这篇论文: 华科白翔老师团队ECCV2018 OCR论文:Mask TextSpotter 下图为端到端文本识别的精度-发表时间散点图,相比之下,近两年的提升并不是很明显。

    2.3K30

    phpy基于深度学习ddddocr库进行OCR双重数字识别

    简介 ddddocr(Deep Double-Digital Digits OCR)是一个基于深度学习的数字识别库,专门用于识别双重数字(双位数字)的任务。...该项目通过使用深度学习的方法,结合卷积神经网络(CNN)和循环神经网络(RNN),对双重数字进行高效准确的识别。通过训练模型并进行预测,ddddocr能够识别图像中的双位数字,并输出其具体数值。...特点和优势 深度学习:ddddocr利用深度学习技术,特别是卷积神经网络和循环神经网络,对双重数字进行准确的识别。 开源项目:ddddocr是一个开源项目,允许用户免费使用、修改和分发代码。...高准确率:通过深度学习的方法,ddddocr在双重数字识别任务上能够取得较高的准确率,有效克服了传统方法在此任务上的困难。...可能对于截图党用户没那么友好~,如果使用过程中无需调用ocr功能或目标检测功能,可以在初始化时通过传参ocr=False关闭ocr功能或det=False来关闭目标检测功能 更多参考:https://github.com

    12410

    告别「复制+粘贴」,基于深度学习OCR,实现PDF转文本

    在本文介绍的项目中,来自 K1 Digital 的高级机器学习工程师 Lucas Soares,尝试使用 OCR(光学字符识别)自动转录 pdf 幻灯片,转录效果还不错。...最近,来自 K1 Digital 的高级机器学习工程师 Lucas Soares 一直在尝试通过使用 OCR(光学字符识别)自动转录 pdf 幻灯片,以便直接在 markdown 文件中操作它们的内容,...基于深度学习OCR 将 pdf 转录为文本 将 pdf 转换为图像 Soares 使用的 pdf 幻灯片来自于 David Silver 的增强学习(参见以下 pdf 幻灯片地址)。...ocr.pytorch 库地址:https://github.com/courao/ocr.pytorch 代码如下: # adapted from this source: https://github.com.../courao/ocr.pytorch %load_ext autoreload %autoreload 2 import os from ocr import ocr import time import

    1.7K20

    (Keras监督学习)15分钟搞定最新深度学习车牌OCR

    大家好,本教程在15分钟之内为大家介绍如果使用深度学习来构建现代文本识别系统,你将学会如何使用keras和监督学习解决这个问题,本指南适合对深度学习进行图像文本识别技术感兴趣的人们。...image_ocr.ipynb),并带有解释和必要的可视化。...下一步是进入“导入” - >“数据集库”选项卡并单击“anpr_ocr”项目。 ? 接着键入名称“anpr_ocr”并单击“下一步”按钮。 ?.../image_ocr.ipynb)中构建了现代OCR系统。...图片的维度是高度为64,长度为128,通道数为3 上图可以看出我们的原始图片经过CNN特征提取之后,维度变成了4*8*4,在实际应用中,我们的输出特征图可能有很多,也就是图片长宽在缩小,但是我们的特征图的深度在增加

    3.4K80

    对比不同OCR模型的教程:传统方法与深度学习的比较

    在光学字符识别(OCR)领域,传统方法和深度学习模型各有优劣,本文将深入探讨它们的特点、适用场景以及如何选择合适的模型。...深度学习方法详解深度学习方法的兴起带来了OCR技术的革新,特别是卷积神经网络(CNN)和循环神经网络(RNN)的应用。...以下是几种主流的深度学习OCR模型:基于CNN的端到端模型Tesseract OCR:Google开发的开源OCR引擎,结合深度学习和传统方法,支持多语言和字体识别。...对比与适用场景分析传统方法和深度学习方法在不同的OCR应用场景中各有优势:传统方法适用于资源有限、对准确性要求不高的场景,如简单票据和文档扫描。...随着技术的进步,未来OCR技术将继续发展,结合更多先进的深度学习架构和算法,以提升识别的准确性和稳定性。

    24510

    OCR 【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取

    随着深度学习在自然语言处理领域的很多方向取得了巨大成功,循环神经网络(RNN)和卷积神经网络(CNN)也被用于信息抽取研究领域,基于深度学习的信息抽取技术也应运而生。...近年来,通过非线性处理实现连续实值向量表示和语义合成的深度学习已被应用于NER系统,产生了最先进的性能。 随着深度学习技术的发展,CNN、RNN、LSTM-CRF、GRU等方法被应用到NER领域。...综上所述,关系抽取技术不仅具有理论意义,还具有十分广阔的应用前景 基于深度学习的关系抽取分为有监督的方法和远程监督的方法,其中有监督的方法又可以分为流水线(pipeline)和联合学习(joint learning...相比于模式匹配和传统机器学习的方法,深度学习方法优势明显。基于深度学习的方法可以在神经网络模型中自动学习特征,将低层特征进行组合,形成更加抽象的高层特征,用来寻找数据的分布式特征表示。...: 端到端的模型,基于深度学习的端到端自主学习模型是一个值得研究和探索的方向 One-shot甚至zero-shot的学习模型,在符合训练标准的数据样本极少的情况下仍能训练出高效的模型 迁移学习的能力,

    1.2K40

    一文全览,深度学习时代下,复杂场景下的 OCR 如何实现?

    传统算法 传统OCR技术通常使用OpenCV算法库,通过图像处理和统计机器学习方法提取图像中的文字信息,用到的技术包括二值化、噪声滤除、连通域分析和Adaboost、SVM等。...随着近些年深度学习技术的迅速发展,基于深度学习OCR技术也已逐渐成熟,能够灵活应对不同场景。...深度学习 目前,基于深度学习的场景文字识别主要包括两种方法,第一种是分为文字检测和文字识别两个阶段;第二种则是通过端对端的模型一次性完成文字的检测和识别。...1)STN-ORC [8] STN-OCR使用单个深度神经网络,以半监督学习方式从自然图像中检测和识别文本。...总结 本文参考前沿文献,总结了当前主流的OCR场景检测技术。相对来说,使用基于深度学习的端对端检测模型可以实现快速、准确的文字识别,且可以灵活的应用于倾斜、弯曲、褶皱变形等复杂场景。

    1.2K20

    一文全览,深度学习时代下,复杂场景下的 OCR 如何实现?

    传统算法 传统OCR技术通常使用OpenCV算法库,通过图像处理和统计机器学习方法提取图像中的文字信息,用到的技术包括二值化、噪声滤除、连通域分析和Adaboost、SVM等。...随着近些年深度学习技术的迅速发展,基于深度学习OCR技术也已逐渐成熟,能够灵活应对不同场景。...深度学习 目前,基于深度学习的场景文字识别主要包括两种方法,第一种是分为文字检测和文字识别两个阶段;第二种则是通过端对端的模型一次性完成文字的检测和识别。...1)STN-ORC [8] STN-OCR使用单个深度神经网络,以半监督学习方式从自然图像中检测和识别文本。...总结 本文参考前沿文献,总结了当前主流的OCR场景检测技术。相对来说,使用基于深度学习的端对端检测模型可以实现快速、准确的文字识别,且可以灵活的应用于倾斜、弯曲、褶皱变形等复杂场景。

    1.8K21

    Implicit Language Model in LSTM for OCR 学习笔记

    我们所描述的隐式LM与上面讨论的文献19、20中的语言模型有所不同,因为学习语言模型的背景和要求不同:OCR明确要求学习字形模型而不是语言模型。...最近的关于使用LSTM进行OCR的基准文件22并没有涉及这一点,而且据我们所知,文献中也没有涉及。...D.训练 该模型的初始学习率为0.001,dropout为0.5。这些超参足以训练模型,而且没有经过精细调整。...结论 LSTM网络在OCR方面取得了成功,但仍然缺乏对特定任务学习内容的深入了解。我们提供依据表明LSTMs在接受OCR任务训练时,学习一个隐式LM。...作为现实世界问题的延伸,它也表明,这种隐式LM在多语言OCR任务中可以使CER提高多达3.6%。

    92840

    OCR 文字识别学习路径

    从2012年开始,深度学习席卷了图像识别领域,在图像分类、目标检测、语义分割等领域秒杀了传统的方法。随着2013年创建MINST数据集,之后的技术都主要是使用深度学习的方法来做文字识别了。...l 传统方法做字符的特征提取,输入分类器,得出OCR模型 在深度学习大行其道之前,OCR的方法基本都是“特征设计à特征提取à分类得出结果”三步走策略。其效果受图片的质量影响较深。...针对传统OCR解决方案的不足,学界业界纷纷拥抱基于深度学习OCR。 2.2 基于深度学习OCR image.png 这些年深度学习的出现,让OCR技术得以蓬勃发展。...当然用深度学习OCR并不是在每个方面都很优秀,因为神经网络的训练需要大量的训练数据,那么如果我们没有办法得到大量训练数据时,这种方法很可能就不奏效了。...针对上述问题根因,近年来出现了各种基于深度学习的技术解决方案。

    12.7K84

    深度学习深度学习

    深度学习的起源 深度学习(Deep Learning)是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。深度学习属于无监督学习。...深度学习的概念源于人工神经网络的研究。...深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。含多隐层的多层感知器就是一种深度学习结构。...深度学习正是希望通过模拟人脑多层次的分析方式来提高学习的准确性。...深度学习的动机 学习基于深度架构的学习算法的主要动机是: ①不充分的深度是有害的; 在许多情形中深度2就足够(比如logicalgates, formal[threshold] neurons

    2K72
    领券