在接口自动化工作中,经常需要处理文字识别的任务,而OCR(Optical Character Recognition,光学字符识别)库能够帮助我们将图像中的文字提取出来。Python中有几个常用的OCR库,包括pyocr、pytesseract和python- tesseract、EasyOCR。本文将对它们进行比较,并提供一些示例代码来演示它们在实际接口自动化工作中的应用。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
机器之心报道 机器之心编辑部 这个文本 OCR 小工具,能让你「所截即所得」。 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行 text
OCR(光学字符识别)是是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。目前,这项技术在拍照搜题、拍照翻译等应用中得到广泛使用。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行
在本篇博文中,我们深入探讨了六种主流的Java OCR(光学字符识别)技术解决方案,旨在为Java开发者提供全面的技术对比和实用指南。从开源神器Tesseract到云服务巨头Google Vision API,再到专业的OCR库如ABBYY,每种解决方案都将通过依赖引入、代码实例、GitHub上的数据集链接、应用场景对比以及优缺点分析进行详细介绍。无论是对于OCR新手还是经验丰富的开发大佬,本文都力求提供一份准确、易读、内容丰富的技术分享,确保每位读者都能找到满足其项目需求的最佳OCR解决方案。
在Python爬虫中,或者使用POST提交的过程中,往往需要提交验证码来验证,除了人工打码,付费的api接口(打码接口),深度学习识别验证码,当然还有适合新人使用的OCR验证码识别库,简单的验证码是可以完全实现自动打码的,比如下面本渣渣分享的通用验证码自动识别库:ddddocr(带带弟弟OCR)!
图像版PDF文件里面都是图片,要先通过OCR技术识别出文本,然后才能进行进一步处理编辑。下面是3个免费的PDF文件OCR识别软件工具:
Tesseract是一个开源的ocr(光学字符识别,即将含有文字的图片转化为文本)引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。
阻碍我们爬虫的。有时候正是在登录或者请求一些数据时候的图形验证码。因此这里我们讲解一种能将图片翻译成文字的技术。将图片翻译成文字一般被成为光学文字识别(Optical Character Recognition),简写为OCR。实现OCR的库不是很多,特别是开源的。因为这块存在一定的技术壁垒(需要大量的数据、算法、机器学习、深度学习知识等),并且如果做好了具有很高的商业价值。因此开源的比较少。这里介绍一个比较优秀的图像识别开源库:Tesseract。
在现代信息处理和管理的时代,光学字符识别(OCR)技术成为了一个非常重要的工具。OCR技术能够将图像中的文本内容转换为可编辑的文本,广泛应用于文档管理、数据录入、票据处理等领域。Surya-OCR是一个强大的OCR库,提供了简便的API和高效的字符识别能力,适用于各种场景下的文本提取需求。
在 Java 中,图片文字识别可以通过 Tesseract-OCR 的 API 完成。Tesseract-OCR 是一个开源的 OCR(Optical character recognition,光学字符识别)引擎,用于识别各种类型的图片中的文本。此外,我们还需要 Leptonica 库的支持,这是一个用于图像处理和分析的开源库。
近期Github开源了一款基于Python开发、名为Textshot的截图工具,刚开源不到半个月已经500+Star。
这次要推荐的是一款可以纯离线使用,无需担心隐私泄露的开源OCR软件,开源项目已经快到5k star的项目,名称叫“Umi-OCR”,OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本,基于 PaddleOCR 。
这个包据说是开源的OCR中非常好用的一个,在图像识别的领域里,tesseract-ocr引擎曾是1995年UNLV准确度测试中最顶尖的三个引擎之一。在1995年到2006年期间,它几乎没有什么改动,但是它可能仍然是现在最准确的开源OCR引擎之一。它会读取二进制的灰度或者彩色的图像,并输出文字。一个内建的tiff阅读器让它可以读取未压缩的TIFF图像,但是如果要读取压缩过的TIFF图像,它还需要一个附加的libtiff库。
作者:matrix 被围观: 4,448 次 发布时间:2018-09-12 分类:零零星星 | 2 条评论 »
光学字符识别(OCR)现在已经有很广泛的应用了,很多开源项目都会嵌入已有的 OCR 项目来扩展能力,例如 12306 开源抢票软件,它就会调用其它开源 OCR 服务来识别验证码。很多流行的开源项目,其背后或多或少都会出现 OCR 的身影。
有个需求,需要从一张图片中识别出中文,通过python来实现,这种这么高大上的黑科技我们普通人自然搞不了,去github找了一个似乎能满足需求的开源库-tesseract-ocr: Tesseract的OCR引擎目前已作为开源项目发布在Google Project,其项目主页在这里查看https://github.com/tesseract-ocr, 它支持中文OCR,并提供了一个命令行工具。python中对应的包是pytesseract. 通过这个工具我们可以识别图片上的文字。 笔者的开发环境如下: ma
光学字符识别(OCR)技术已经得到了广泛应用。比如发票上用来识别关键字样,搜题 App 用来识别书本上的试题。
在当今数字化时代,文字识别技术(OCR)已成为我们日常生活和工作中的重要工具。 OCR可以将图像或纸质文件中的文字转化为可编辑和可搜索的数字格式,为我们提供了便捷和高效的方式来处理大量的文本信息。
首先我们需要安装PIL和pytesseract库。 PIL:(Python Imaging Library)是Python平台上的图像处理标准库,功能非常强大。 pytesseract:图像识别库。
首先和大家演示一下实现的效果,我们的最终目标是基于一张图片,通过技术的手段自动提取图片的信息,并展示到文档中,提高文档编写的效率。
经过不断的技术优化和沉淀,百度大脑 AI 开放平台已经成为企业智能化升级道路上重要的技术支撑,通过百度智能云赋能各行各业实现产业智能化。本月EasyDL OCR 自训练平台全面开放,内置百度领先的 OCR 预训练模型,可快捷完成数据标注并批量生成虚拟数据,大幅扩充训练集,低成本零门槛定制专属的高精度 OCR 模型。
前面我们讲到了adb的封装,里面具体讲到到了在一副图片中寻找目标的坐标并点击。这篇文章我们讲讲对一副图片的特定区域做截取,并利用开源库做图纹识别。
Tesseract.js是基于Tesseract的一个纯 Javascript 编程语言的 ocr 识别库,简单实用。支持包括中英文等100多种语言(包括中文)的图片和视频文字识别,自动文本方向和脚本检测,用于读取段落,单词和字符边界框的简单界面,底层封装了Tesseract OCR引擎来实现。
Tesseract的OCR引擎最先由HP实验室于1985年开始研发,至1995年时已经成为OCR业内最准确的三款识别引擎之一。2005年,Tesseract由美国内华达州信息技术研究所获得,并求诸于G
光学字符识别(OCR)技术已经得到了广泛应用。比如发票上用来识别关键字样,搜题App用来识别书本上的试题。
从 Google 的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广 泛且具有深远的影响和雄伟的愿景的领域。
Tesseract.js 一个 纯Javascript编程语言的 ocr 识别库,简单实用。
从Google的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广泛且具有深远的影响和雄伟的愿景的领域。
文字是传递信息的高效途径,利用OCR技术提取文本信息是各行业向数字智能化转型的第一步。与此同时,针对OCR提取的海量文本信息,利用NLP技术进一步加工提取、分析理解后才能最大化发挥文本信息的价值。NLP技术可以提升OCR准确率,并从文本中抽取关键信息、构建知识图谱,搭建检索、推荐、问答系统等。
文字 OCR 识别大家日常应该都会用到,最新的微信也是增加了这个功能,只是功能还比较弱。
我们希望在汇集行业领先的预训练模型,减少开发者的重复研发成本,提供更加绿色环保、开源开放的AI开发环境和模型服务,助力绿色“数字经济”事业的建设。 ModelScope平台将以开源的方式提供多类优质模型,开发者可在平台上免费体验与下载使用。
该项目的主要功能是提供预训练和微调后的 LLaMA 语言模型的权重和起始代码。这些模型参数范围从 7B 到 70B 不等。
Pine 发自 凹非寺 量子位 | 公众号 QbitAI 重度互联网爱好者们福利来了! 你是否遇到过这种情况:一个梗图寻遍全网都还没找到。 现在外网一位小哥搞出了一个互联网规模的Meme搜索引擎,库里有近两千万个梗图,涵盖各种小众文化。 检索关键词,或者上传相似图片,结果就能秒出! 若遇到Meme库里没有的梗图,还可共享上传。 网友六年都没找到的梗图,在这个小哥的网站上2分钟就找到了。 然鹅这样一个秒秒钟出梗图的背后的装置确实酱婶儿的: (这不会有点太简陋了吧) 这时候可能就有盆友好奇,这个粗糙的装置
2019 DCIC已经开赛一个月了,据说华为赛题比较有难度,小编特此搜罗到一位妹子大佬的Baseline,为各位参赛者提供思路~
OCR技术有着丰富的应用场景,包括已经在日常生活中广泛应用的面向垂类的结构化文本识别,如车牌识别、银行卡信息识别、身份证信息识别、火车票信息识别等等,此外,通用OCR技术也有广泛的应用,如在视频场景中,经常使用OCR技术进行字幕自动翻译、内容安全监控等等,或者与视觉特征相结合,完成视频理解、视频搜索等任务。
随着人工智能技术的逐渐成熟,计算机视觉、语音、自然语言处理等技术在金融行业的应用从广度和深度上都在加速,这不仅降低了金融机构的运营和风险成本,而且有助于提升客户的满意度,比如:利用OCR技术快速处理海量表格做信息结构化抽取和存储,大幅提升从业人员工作效率;利用NLP技术实现智能问答解决方案,帮助用户即使没有复杂的金融背景知识也能快速找到自己需要的信息。
源码地址:https://github.com/tesseract-ocr/tesseract
目前,很多网站为了防止爬虫肆意模拟浏览器登录,采用增加验证码的方式来拦截爬虫。验证码的形式有多种,最常见的就是图片验证码。其他验证码的形式有音频验证码,滑动验证码等。图片验证码越来越高级,识别难度也大幅提高,就算人为输入也经常会输错。本文主要讲解识别弱图片验证码。
pytesseract只是tesseract-ocr的一种实现接口。所以要先安装tesseract-ocr(大名鼎鼎的开源的OCR识别引擎)。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
近期GitHub上一位大神开源了一个叫做chineseocr_lite的OCR的项目,这是一个超轻量级中文OCR,支持竖排文字识别、NCNN推理,识别模型型仅17M(Psenet (8.5M) + crnn (6.3M) + anglenet (1.5M))。
领取专属 10元无门槛券
手把手带您无忧上云