很多软件内置了OCR功能,即图片提取文字功能。有些是免费提供给大家使用,但有些是收费的。不管是免费的还是收费的,终究逃离不了隐私问题。用别人的OCR,总得把图片传到对方的服务器。今天我们使用Python开发一个OCR软件,如下图所示。
本期将介绍并演示C++ OpenCV使用PaddleOCR做文字识别的步骤与效果。
最近有读者问我平时是怎么记录视频笔记的,因为陌溪之前一直沉迷于B站视频学习,在很多热门的视频下都留下我写的视频学习笔记,也成功帮助小伙伴们节省了很多时间,这次陌溪把压箱底的记笔记操作分享给大家。
现在的任务是从OCR文字识别的结果中提取我指定的关键信息。OCR的文字识别结果使用符号包围,包含所识别出来的文字,顺序在原始图片中从左至右、从上至下。我指定的关键信息使用[]符号包围。请注意OCR的文字识别结果可能存在长句子换行被切断、不合理的分词、对应错位等问题,你需要结合上下文语义进行综合判断,以抽取准确的关键信息。输出为json格式。
在日常的工作中,例如自动化测试开展时,经常涉及到一些验证码识别、文本识别、图像识别的场景,市面上虽也有很多识别工具,但质量、准确性参差不齐。
在Python爬虫中,或者使用POST提交的过程中,往往需要提交验证码来验证,除了人工打码,付费的api接口(打码接口),深度学习识别验证码,当然还有适合新人使用的OCR验证码识别库,简单的验证码是可以完全实现自动打码的,比如下面本渣渣分享的通用验证码自动识别库:ddddocr(带带弟弟OCR)!
文字 OCR 识别大家日常应该都会用到,最新的微信也是增加了这个功能,只是功能还比较弱。
这个包据说是开源的OCR中非常好用的一个,在图像识别的领域里,tesseract-ocr引擎曾是1995年UNLV准确度测试中最顶尖的三个引擎之一。在1995年到2006年期间,它几乎没有什么改动,但是它可能仍然是现在最准确的开源OCR引擎之一。它会读取二进制的灰度或者彩色的图像,并输出文字。一个内建的tiff阅读器让它可以读取未压缩的TIFF图像,但是如果要读取压缩过的TIFF图像,它还需要一个附加的libtiff库。
国内快速下载链接:Releases · xushengfeng/eSearch · fastgit
关于OCR这块以前《Android通过OpenCV和TesserartOCR实时进行识别》中用过TesserartOCR,原来用的模型库也挺大,最近也研究了下别的OCR,最终决定采用百度飞桨PaddleOCR,本篇就是基于百度飞桨的PaddleOCR在Window版下C++的布署。
本接口支持对中国大陆机动车车牌的自动定位和识别,返回地域编号和车牌号码与车牌颜色信息。
如何在 C++ 项目中,通过源码使用 PaddlePaddle 实现 OCR 功能。 本项目的所有源码:gitee: paddleocr
在人工智能兴起的当下,AI正以不可思议的速度重塑着每一个行业。在笔者看来,AI处理能力强弱的最核心的评判指标终将是数据,先是数据质量,再是数据规模。两者任何一个的差距都将是能力强弱的分水岭。那么接踵而至数据从哪里来?我们又将要如何提取数据?...本文的这款软件将会重点帮我们解决如何从图片、二维码、PDF等介质中提取文件内容的问题,相信大家读完本文后会有一定的收获。
直接上源码,这是一个收费的且不开源的库,测试效果也不太理想 亲测效果: 对于相同字体。非倾斜的,比如http://dz.bjjtgl.gov.cn/service/checkCode.do,识别率还是挺高的; 对于斜体或者其他变异的,如下代码识别率就很低了,可能需要调整识别引擎的参数了,大家自己查找测试下。 这个测试版本的,会有弹出对话框 框框~~ package com.example; import java.awt.image.BufferedImage; import java.io.File;
在进行文字识别时候,需要使用的数据集样式为一张含有文本的图片以及对应文本内容的标签。但是一般而言,实际情况是构建的文本字典中,每个字至少要出现200次才能有好的识别效果,因此,先对所有的label进行单字统计,看每个字出现的个数是否超过200次,如果不满足,则需要进一步收集数据。
Tesseract 的 release 版本下载地址:https://github.com/tesseract-ocr/tesseract/wiki/Downloads,这里需要注意这一段话:
功能其实很简单,就是我们点对应的按钮后,去拍照或者去相册选择对应的图片。然后把图片上传到云存储,会有一个对应的图片url,然后把这个图片url传递到云函数,然后云函数里使用小程序的开发ocr能力,来识别图片,返回对应的信息回来。如下图所示,我们识别银行卡(身份证什么的就不演示了,涉及到石头哥个人隐私)
源码地址:https://github.com/tesseract-ocr/tesseract
在日常生活中,我们经常会需要将图片里的文字信息提取出来使用,通过人工方式采集的录入方式十分机械且效率低下。其实可以通过OCR技术,将印刷体、手写体的图片进行扫描即可将文字识别并录入系统中。市面上也存在较多OCR识别应用,但不一定能够适用于我们。
哈喽,大家好,我是一条。 好久没出python的教程了,今天教大家做个好玩又实用的。 点赞,收藏准备好。 前言 不知道大家工作中有没有遇到这种情况 产品不知道从哪搞来的截图就这么粘在需求文档上,你还得一个一个敲,气的我这…… 网上有个资料,死活就是不让你复制,气的我这…… 有篇技术文章,代码全是截图,气的我这…… ok。别气了,求人不如求自己,一条教你自制带文字识别的截图工具。 成品展示 现已将文件设置成开机自启动,并一直在后台运行; 当监听到有截屏操作时,保存剪切板的文件; 调用百度开放API进行文字识别
tesserocr.file_to_text函数的路径参数中不能有中文字符,否则就会报这个错。经测,在换入一个纯英文的路径后可以正常运行
图片伪装是在网页元素中,将文字、图片混合在一起进行展示,以此限制爬虫程序直接获取网页内容
本文目录 前言 API选择 腾讯云OCR 简介: 请求头: 返回内容 计费方式 调用注意事项 PHP源码分享 使用体验: 前言 前不久有朋友为了方便工作,问我“怎么把图片中的文字提取出来”,我当时就想到手机QQ扫一扫刚好可以实现这个功能,就让他先将图片传到手机,然后再用手机QQ扫一扫 告诉他之后,我也感觉有点不妥,要是一张两张还好,要是图片多了,一直把图片传到手机,用手机QQ扫是极其影响工作效率的,然后就去百度了下看看有没有那种在线识别的,居然没找到。于是乎,作为一个“程序员”,哪能被这些东西给难倒
在日常办公或者学习中,往往存在这样一个工作场景,比如,“老王,我这里有一张图片,你把里面的文字信息给我整理出来”,都2021年了,你真的还在手敲图片文字信息么?那么还不赶紧收藏这篇秘籍,这里本渣渣总结了三种方法,教你如何将图片上的文字信息提取出来,图片转成文字信息的方法。
做视频剪辑的同学都知道,搜索对标账号和样片是相当耗时的,一般我们通过关键字检索可以获取少量账号和视频素材,并且短时间检索的数据是相同的,因此没法持续获取数据
自学Python3第5天,今天突发奇想,想用Python识别图片里的文字。没想到Python实现图片文字识别这么简单,只需要一行代码就能搞定
这里使用了 pytesseract 来进行验证码识别,它是基于 Google 的 Tesseract-OCR ,所以在使用之前需要先安装 Tesseract-OCR。使用 PIL 来进行图像处理。pytesseract 默认支持 tiff、bmp 图片格式,使用 PIL 库之后,能够支持 jpeg、gif、png 等其他图片格式;
我曾经写过一个项目 ddddocr_server,使用 fastapi 提供 http 接口,以此来调用 ddddocr 库。
安装paddle,pip install paddlepaddle、paddlepaddle-gpu(gpu版本) 安装ocr,pip install paddleocr,gitee上的源码https://gitee.com/paddlepaddle/PaddleOCR.git
近期Github开源了一款基于Python开发、名为Textshot的截图工具,刚开源不到半个月已经500+Star。
图片识别的技术到几天已经很成熟了,只是相关的资料很少,为了方便在此汇总一下(C#实现),方便需要的朋友查阅,也给自己做个记号。 图片识别的用途:很多人用它去破解网站的验证码,用于达到自动刷票或者是批量
文章目录 《这是我见过最强的OCR开源算法模型了》 前言 一、来吧,展示! 二、OCR简介 (一)什么是OCR (二)应用举例 (三)OCR难点 三、PaddleOCR介绍 (一)总结介绍 (二)相关地址总结 四、PaddleOCR的使用 (一)PaddleOCR项目介绍 (二)测试自己的数据 五、多维度对比分析 (一)教程的完备性对比 (二)易用性对比 (三)运行速度对比 (四)精度对比 (五)多角度对比 (六)其他分析 六、总结 《这是我见过最强的OCR开源算法模型了》 前言 最近参加“中国软件杯”的一
关卡地址:http://www.pythonchallenge.com/pc/def/ocr.html(点击前往) 这一关卡信息同样非常精简,只有短短的一句话,然后其他信息都没有什么用,真心用心良苦(能说这个作者操蛋吗)。不多说了,话语中提到了 页面源码,那我们就看看源码有什么。 整个源码都是html的一些标签没什么特别,知道有一段注释,应该答案就在这段信息里面了,但是观察了很久,没有什么头绪,来看看听雨轩点击前往的讲解,原来是在这段注释中寻找英文字母,好吧作者你赢了。 思路是:用 urllib.request.open 获取链接,用其read()函数读取 html 源码,再用正则提取注释的内容,在提取之后的内容寻找内容当中的字母就是我们的结果。 代码如下:
既然点进来了,相信你或多或少都听说过这两个名词了,因此,在为你解答之前,让我们先从一个例子出发。假如你想开发一个 OCR 应用(通俗的说就是文字识别应用),他的功能是识别用户上传的一张图片,然后将图片中的文字识别出来返回给用户。如下图所示:
tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载。
腾讯云开源应用中心,基于腾讯云产品能力,适配热门开源应用。完全开源,全栈云生,一键使用。 在日常生活中,我们经常会需要将图片里的文字信息提取出来使用,通过人工方式采集的录入方式十分机械且效率低下。其实可以通过OCR技术,将印刷体、手写体的图片进行扫描即可将文字识别并录入系统中。市面上也存在较多OCR识别应用,但不一定能够适用于我们。 接下来,我们将基于开源应用uni-app和腾讯云开源应用插件中心适配的腾讯云文字识别(OCR)插件,快速的开发一款文字识别应用。 预备环境 本次开发基于uni-app框架,
近日,「Best of JS」发布了过去一年在 GitHub 上 Star 数增速最快的 JavaScript 开源项目(2023 JavaScript Rising Stars),前 10 的开源项目 Star 增长竟然都是令人惊叹的 1.5w 起步,第一名更是近 4w 🤯,简直太逆天了!
OCR(Optical character recognition) —— 光学文字识别,是图像处理的一个重要分支,中文的识别具有一定挑战性,特别是手写体和草书的识别,是重要和热门的科学研究方向
https://github.com/tesseract-ocr/tesseract
阻碍我们爬虫的。有时候正是在登录或者请求一些数据时候的图形验证码。因此这里我们讲解一种能将图片翻译成文字的技术。将图片翻译成文字一般被成为光学文字识别(Optical Character Recognition),简写为OCR。实现OCR的库不是很多,特别是开源的。因为这块存在一定的技术壁垒(需要大量的数据、算法、机器学习、深度学习知识等),并且如果做好了具有很高的商业价值。因此开源的比较少。这里介绍一个比较优秀的图像识别开源库:Tesseract。
前不久有朋友为了方便工作,问我“怎么把图片中的文字提取出来”,我当时就想到手机QQ扫一扫刚好可以实现这个功能,就让他先将图片传到手机,然后再用手机QQ扫一扫 。
https://github.com/TencentCloud/tencentcloud-sdk-php
上一篇《PaddleOCR C++动态库编译及调用识别(一)》中把PaddleOCR的动态库编译完也调用成功,也考虑了几个可以优化的方法,本来也是想按自己的想法做的优化,过程中也踩到了不少的坑,慢慢填吧。这篇文章算是做了一个踩坑的记录。
功能实现来自poocr这个开源的第三方库,使用 教程之前已经在我的同名小破站账号给大家分享过了~👇
我国电力行业发展迅速,电表作为测电设备经历了普通电表、预付费电表和智能电表三个阶段的发展。在产业场景中,表的种类多达十几种,过去依赖人工抄表,成本很高。如果能够采集到大量电表图片,借助人工智能技术批量检测和识别,将会大幅提升效率。
本篇就来看看如何把PaddleOCR的源码重新编译成动态库,供OpenCV的Demo调用。
参考 https://blog.csdn.net/gs80140/article/details/103938651
之前在博文中介绍在python中如何调用tesseract ocr引擎,当时主要介绍了shell模式,shell模式需要安装tesseract程序,并且效率相对略低。
语言包地址:https://github.com/tesseract-ocr/tessdata
领取专属 10元无门槛券
手把手带您无忧上云