LBP(Local binary pattern)是一个易理解且有效的局部图像特征,应用很广泛。它具有旋转不变性和灰度不变性的显著的有点。已经广泛的应用于纹理分类、纹理分割、人脸图像分析等领域。
之前我已经写过一篇关于局部二值模式(LBP)文章,当时主要是介绍了一下局部二值模式的概念与其简单的尺度空间扩展,本文是上一篇文章基础上对局部二值模式的深化,涉及到局部二值模式的不变性介绍,包括光照不变
人眼中心定位是一个用于眼部追踪的算法,它来源于github中eyelike项目,C++语言实现,依赖OpenCV库。 关于代码的编译,作者提供了CMakeLists.txt文件,同时支持Windows,Linux和Mac OS X。 该项目只实现了简单的2维眼球跟踪功能,没有3维信息,也没有视线跟踪和估计功能。 作者提供了另一个博客链接Simple, accurate eye center tracking in OpenCV,其中有一段演示视频,可以看到跟踪效果。 项目主要的算法来源于剑桥大学的一篇文章:《Accurate eye centre localisation by means of gradients》。
玻璃纤维织物是经编多轴向织物,由一层或多层平行的纱线按照尽可能多的方向交错而成的。织物具有一定的密实度和厚度,颜色一般为白色,生产时的质量缺陷主要为劈缝缺陷,在线生产速度为2m/min,幅宽一般为2.5m左右,检测精度要求为0.5mm。
选择性搜索是在对象检测中使用的区域提议算法。它的设计速度很快,召回率很高。它基于基于颜色,纹理,大小和形状兼容性的相似区域的分层分组计算。
在对象检测RCNN模型中使用了SS(Selective Search)进行区域推荐,改进了传统图像检测进行全局开窗检测的高计算消耗,典型的对象检测网络RCNN的结构如下:
当今世界,随着科技的不断进步,生物识别技术已经成为了安全和身份验证领域的热门话题之一。如:人脸识别,指纹识别,虹膜比对,掌纹识别等。其中,掌纹识别技术作为一种生物特征识别方法,因其高度精准和高度安全性而备受关注。在这一背景下,越来越多的应用领域开始采用掌纹识别技术,包括金融、安全、物流和智能门禁等。本文将介绍如何在X86架构的嵌入式系统上部署一个开源的掌纹识别算法。
Haar 特征是图像处理中的一种纹理特征提取方法,广泛用于人脸识别。 简介 Haar 特征值反映了图像的灰度变化情况 ,该特征原理很简单,本质上相当于使用固定模板对图像做卷积,但是卷积核比较简单可解释 早期 Haar 特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。 Lienhart R.等人对 Haar-like 矩形特征库做了进一步 扩展,扩展后的特征大致分为 4 种类型——边缘特征、线性特征、圆心环绕特征和特定方向特征 : 每种特征模板内有白色和黑色两种矩形,定义该模
Gabor滤波器是OpenCV中非常强大一种滤波器,广泛应用在纹理分割、对象检测、图像分维、文档分析、边缘检测、生物特征识别、图像编码与内容描述等方面。Gabor在空间域可以看做是一个特定频率与方向的正弦平面加上一个应用在正弦平面波上的高斯核
前面我们学习了《C++ OpenCV特征提取之基本的LBP特征提取》,用的是基本的LBP特征的提取,这次我们接着上次的代码,来看看扩展的ELBP的特征提取。
灰度共生矩阵(Gray Level CO-Occurrence Matrix-GLCM)是图像特征分析与提取的重要方法之一,在纹理分析、特征分类、图像质量评价灯方面都有很重要的应用,其基本原理图示如下:
LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikäinen, 和 D. Harwood [1][2]在1994年提出,由于LBP特征计算简单、效果较好,因此LBP特征在计算机视觉的许多领域都得到了广泛的应用,LBP特征比较出名的应用是用在人脸识别和目标检测中,在计算机视觉开源库Opencv中有使用LBP特征进行人脸识别的接口,也有用LBP特征训练目标检测分类器的方法,Opencv实现了LBP特征的计算,但没有提供一个单独的计算LBP特征的接口。
视觉显著性检测技术是一种计算机视觉算法,它能够识别图像或视频中最为显著或最容易吸引人类视觉注意的区域。在辅助驾驶系统中,这项技术可以用来识别和优先处理对驾驶安全至关重要的视觉信息,如行人、交通标志、潜在障碍物等。本文将探讨视觉显著性检测技术的原理、在辅助驾驶中的应用,以及面临的挑战和未来的发展方向。
https://github.com/electech6/ORB_SLAM2_detailed_comments
人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能。从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验。
这篇文章主要为了研究双目立体视觉的最终目标——三维重建,系统的介绍了三维重建的整体步骤。双目立体视觉的整体流程包括:图像获取,摄像机标定,特征提取(稠密匹配中这一步可以省略),立体匹配,三维重建。我在做双目立体视觉问题时,主要关注的点是立体匹配,本文主要关注最后一个步骤三维重建中的:三角剖分和纹理贴图以及对应的OpenCV+OpenGL代码实现。
https://developer-public-1258344699.cos.ap-guangzhou.myqcloud.com/column/column/10335061/20230218-68017941.png
一:局部二值模式(LBP)介绍 局部二值模式(Local Binary Pattern)主要用来实现2D图像纹理分析。其基本思想是用每个像素跟它周围的像素相比较得到局部图像结构,假设中心像素值大于相
在第二部分,我们分析了一个计算相机矩阵和失真系数的脚本。这些是三维重建过程中所必需的相机固有参数。
原文链接:https://yetingyun.blog.csdn.net/article/details/108153075 创作不易,未经作者允许,禁止转载,更勿做其他用途,违者必究。
传统方式的图像超像素常见的方式就是基于立方插值跟金字塔重建。OpenCV中对这两种方式均有实现,低像素图像在纹理细节方面很难恢复,从低像素图像到高像素图像是典型的一对多映射,如果找到一种好的映射关系可以尽可能多的恢复或者保留图像纹理细节是图像超像素重建的难点之一,传统方式多数都是基于可推导的模型实现。而基于深度学习的超像素重新方式过程未知但是结果优于传统方式。在深度学习方式的超像素重建中,对低像素图像采样大感受野来获取更多的纹理特征信息。OpenVINO中提供的单张图像超像素网络参考了下面这篇文章
本文介绍了基于OpenCV和GLCM的图像纹理特征提取和分析方法,包括灰度共生矩阵、LBP算子、灰度级-邻域系统、Gabor滤波器等。首先介绍了GLCM和LBP算子的原理,然后通过实验证明了基于这两种算子的纹理特征提取方法的效果。最后,介绍了灰度级-邻域系统和Gabor滤波器的原理和实现方法,并给出了实验结果。
OpenCV3.x的图像计算模块多了新算法API-无缝克隆(Seamless Cloning),主要是针对图像编辑,局部修改等应用场景实现迁移对象与原图像场景的无缝克隆。相关函数与参数说明如下:
在上一章中,我们了解了光学字符识别(OCR)技术。 我们借助 Tesseract 库和预训练的深度学习模型(EAST 模型)来识别扫描文档和照片中的文本,该模型已随 OpenCV 一起加载。 在本章中,我们将继续进行对象检测这一主题。 我们将讨论 OpenCV 以及其他库和框架提供的几种对象检测方法。
目标检测是计算机视觉领域中的一个重要问题,它旨在识别图像中的特定物体并确定其位置。目标检测在许多应用领域中都有广泛的应用,如智能交通、安全监控、医学影像分析等。
url : https://medium.com/@omar.ps16/stereo-3d-reconstruction-with-opencv-using-an-iphone-camera-part-iii-95460d3eddf0
目标检测与跟踪是计算机视觉领域的重要任务,用于在图像或视频中自动检测和跟踪特定的目标。这项技术在人脸识别、行人检测、车辆跟踪等领域具有广泛应用。本文将以目标检测与跟踪概念为中心,为你介绍使用 OpenCV 进行目标检测和跟踪的基本原理、方法和实例。
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 一:API函数介绍 OpenCV3.x的图像计算模块多了新算法API-无缝克隆(Seamless Cloning),主要是针对图像编辑,局部修改等应用场景实现迁移对象与原图像场景的无缝克隆。相关函数与参数说明如下: seamlessClone(InputArray src, // 输入的待克隆的图像,三通道InputArray dst, // 输入的克隆目标图像,三通道InputArray mask, // 遮罩层,大
机器视觉就是利用机器代替人眼做出测量和判断,在应用层面上,目前主要用来做系统集成或二次开发的较多,可以概括为以下四个部分: 1、检查。 外观及缺陷检测,主要利用模板匹配。 2、识别。 生物特征识别(人脸、语音、指纹、虹膜),目标识别(车牌识别,射频识别等),条码识别(一维码、二维码),字符识别,纹理识别等。识别的最终目的主要是为了分类,这里需要利用大数据训练学习,需要借助深度学习。 3、测量。 几何尺寸测量(长、宽、高、周长、面积、体积等),圆或者椭圆(圆心、半径、轮廓、角度、尺寸等);测量必须先标定
人脸检测的常见步骤如下,如果想要将人脸准确地检测出来,需要通过建立人脸模型,获取准确区分人脸的分类器,这里我们使用网上公开的扩展包或已经训练好的分类器。
来源:https://blog.csdn.net/dulingwen/article/details/104128503
图像处理之特征提取(二)之LBP特征简单梳理 https://blog.csdn.net/coming_is_winter/article/details/72859957 https://blog.csdn.net/zouxy09/article/details/7929531 LBP特征理解。 http://blog.csdn.net/hqh45/article/details/24501097 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;
图像处理是利用计算机对图像进行去噪、增强、复原、重建、编码、压缩、几何变换、分割,提取特征等的理论、方法和技术。图像处理中,输入的是低质量的图像,输出的是改善质量后的图像。
高斯噪声是指幅值的概率密度函数服从高斯分布的噪声,如果其功率谱密度服从均匀分布,则为高斯白噪声。
该文介绍了如何使用HOG+SVM进行行人检测,并给出了OpenCV封装好的函数用法。首先介绍了HOG+SVM的背景知识,然后给出代码示例,最后通过两个测试图片的读取和运行结果展示。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer,即 Next-ViT。Next-ViT 能像 CNN 一样快速推断,并有 ViT 一样强大的性能。 由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大? 近期一些工作试
人脸识别技术作为一种生物识别技术,在过去几十年中经历了显著的发展。其发展可以分为几个主要阶段,每个阶段都对应着特定的技术进步和应用模式的变化。
TIAGo机器人在机器人/ TIAGo /教程中提供了一套全面的教程。教程使用Gazebo模拟器,目前包含如何使用OpenCV,PCL,自主导航,MoveIt的教程!和人机器人互动。
计算机视觉其实是通过摄像头采集的画面去模拟人眼识别物体,这是个很广泛的学科,应用也很多。
2016年张姗姗等人从分析的角度对各个工作进行总结和归纳。通过分析错误案例来找到错误来源,并提出相应的解决方案以进一步提高检测率。研究发现,在高层级中主要有两类错误,分别是定位错误和背景分类错误。可以尝试两个解决方案,其一是针对检测框对齐性比较差这一现象,可以通过使用对齐性更好的训练样本标签来解决;而针对模型判别能力比较差的问题,可以通过在传统的 ICF 模型上使用 CNN 进行重新打分来提升检测的性能。
如果一个点在两个正交方向上都有明显的导数,则我们认为此点更倾向于是独一无二的,所以许多可跟踪的特征点都是角点。
OpenCV DNN模块支持的图像语义分割网络FCN是基于VGG16作为基础网络,运行速度很慢,无法做到实时语义分割。2016年提出的ENet实时语义分割网络基于编码与解码的网络语义分割方式,类似UNet网络,通过构建自定义Block块,在Cityscapes, CamVid, SUN数据集上实现了性能与实时双提高。
前言:现今最主流的处理图像数据的技术当属深度神经网络了,尤其是卷积神经网络CNN尤为出名。本文将通过讲解CNN的介绍以及使用keras搭建CNN常用模型LeNet-5实现对MNist数据集分类,从而使得读者更好的理解CNN。 1.CNN的介绍 CNN是一种自动化提取特征的机器学习模型。首先我们介绍CNN所用到一些基本结构单元: 1.1卷积层:在卷积层中,有一个重要的概念:权值共享。我们通过卷积核与输入进行卷积运算。通过下图可以理解如何进行卷积运算。卷积核从左到右对输入进行扫描,每次滑动1格(步长为1),
图像经常因噪声造成破损。镜头上可能有灰尘或水渍,旧图像可能有划痕,或者图像的一部分被损坏。图像修复是消除这种损坏的一种方式,它通过摄取被损坏区域边缘的色彩和纹理,然后传播混合至损坏区域的内部。
本期将介绍并演示OpenCV中使用textureFlattening实现图像中指定区域纹理平滑的效果。
车牌识别技术 是智能交通系统中的重要组成部分,它可以对车辆的行驶轨迹进行跟踪和记录,为交通管理提供重要的数据支持。
计算机视觉的特征提取算法研究至关重要。在一些算法中,一个高复杂度特征的提取可能能够解决问题(进行目标检测等目的),但这将以处理更多数据,需要更高的处理效果为代价。而颜色特征无需进行大量计算。只需将数字图像中的像素值进行相应转换,表现为数值即可。因此颜色特征以其低复杂度成为了一个较好的特征。
方向梯度直方图(Histogram of Oriented Gradient, HOG)于2005年提出,是一种常用的特征提取方法,HOG+SVM在行人检测中有着优异的效果。
领取专属 10元无门槛券
手把手带您无忧上云