1、自己写后端接口,然后对外暴露些api,传些参数去执行对应的逻辑。例如我们目前在用的django+antd
ossutil支持在Windows、Linux、macOS等系统中运行,您可以根据实际环境下载和安装合适的版本。
大家好,我是山月,这是我最近新开的专栏:「前端部署系列」。包括 Docker、CICD 等内容,大纲图示如下:
在CI/CD中演示前端三种部署方案,镜像部署,服务器部署,OSS部署 这是一次总结。废话不说直接上代码 .gitlab-ci.yml image: node:latest stages: - install - code-lint - build - deploy-test - deploy-uat - deploy-pro cache: paths: - node_modules install: stage: install script: -
假设将带有 hash 值的静态资源推至 CDN 中,此时静态资源的地址为: https://cdn.shanyue.tech。而它即是我们将要在 webpack 中配置的 config.output.publicPath。
距Java8(14年3月19日)发布马上就四年了;相信接触过java8的人,会对它的很多新的特性新的方法有感觉;自然我也不例外;今天就一起给大家分享一个java8中的方法。
如果我们在渗透测试中发现一个OSS,而且默认无法进行读取数据(即桶ACL为"私有"),但是通过查询ACL我们发现桶ACL可写,那么此时我们就可以通过写ACL来更新桶ACL并获取到对象数据信息
先需要安装ossutil这是一键安装脚本(Linux)sudo -v ; curl https://gosspublic.alicdn.com/ossutil/install.sh | sudo bash下面是脚本user="root" #备份用户密码 password="111111" #mysql连接端口 port="3306" mysql_path="/usr/bin/" date=$(date +%Y-%m-%d_%H-%M-%S) del_date=$(date +%Y-%m-%d) #备份路径-
将脚本保存为.bat后缀文件格式;然后双击这个bat文件可以测试脚本写的是否可用。
自从 github 提供了 github actions 后,个人或者依赖于 github 的公司可以考虑把持续集成方案迁到 github actions。
之前在和小伙伴在做技术分享的时候,分享了他们做的某医院数据上云方案。该医院因为数据延迟问题,病人无法及时看到检验报告。
1、excel文件读写--阿里easyexcel sdk 2、文件上传、下载--腾讯云对象存储 3、远程服务调用--restTemplate 4、生产者、消费者--redisTemplate leftPush和rightPop操作 5、异步处理数据--Executors线程池 6、读取网络文件流--HttpClient 7、自定义注解实现用户身份认证--JWT token认证, 拦截器拦截标注有@LoginRequired注解的请求入口
文章转自:http://www.51testing.com/html/44/n-3713444.html 白盒测试用例设计的一个很重要的评估标准就是对代码的覆盖度。一说到覆盖,大家都感觉非常熟悉,但是常见的覆盖都有哪些?各自有什么优缺点?在白盒测试的用例设计中我们应该如何自如地运用呢?今天小编就为大家总结了一下几种常见的覆盖以及各自的优缺点。 白盒测试中常见的覆盖有六种:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖。下面我们就分别看看这几种不同的覆盖究竟是什么鬼。 一、语句覆盖(St
代码覆盖率作为一个指导性指标,可以一定程度上反应测试的完备程度,是软件质量度量的一种手段。100%覆盖的代码并不意味着100%无bug的应用,代码覆盖率作为质量目标没有任何意义,而我们应该把它作为一种发现未被测试覆盖的代码的手段。
白盒测试也称逻辑驱动测试,是针对被测单元内部是如何进行工作的测试。它根据程序的控制结构设计测试用例,主要用于软件程序验证,属于基于代码的测试技术。与之相对应的黑盒测试是从用户角度对软件进行测试。
白盒测试也称结构测试,透明盒测试。主要用于单元测试阶段,代码和逻辑的测试,重点复杂的测试,是一种测试用例设计方法,不同于黑盒测试,白盒测试是可以看到内部代码如何运作的,可通过测试来检测产品内部是否符合规定正常运行。
在做单元测试时,代码覆盖率常常被拿来作为衡量测试好坏的指标,甚至,用代码覆盖率来考核测试任务完成情况,比如,代码覆盖率必须达到80%或 90%。于是乎,测试人员费尽心思设计案例覆盖代码。用代码覆盖率来衡量,有利也有有弊。本文我们就代码覆盖率展开讨论,也欢迎同学们踊跃评论。 首先,让我们先来了解一下所谓的“代码覆盖率”。我找来了所谓的定义: 代码覆盖率 = 代码的覆盖程度,一种度量方式。 上面简短精悍的文字非常准确的描述了代码覆盖率的含义。而代码覆盖程度的度量方式是有很多种的,这里介绍一下最常用的
代码覆盖率分析几乎现在已经成为DevOps平台的标配能力,也是所谓精准测试等服务的基础能力。那么除了做版本的覆盖率之外还能做哪些事情呢?正值年底了,笔者梳理了一下,供大家编写明年的工作规划时参考。
2. 代码覆盖率、条件覆盖率和状态机覆盖率均达到 100%,可以认为设计没有问题。
Branch/Decision coverage:分支覆盖率评估HDL代码中的条件,例如if-else,case语句和三元运算符(?:)语句,并检测是否同时包含真假情况。在上面的示例中,只有一个分支(if A> B),分支覆盖率会检查是否真假两个分支都被触发了。
查看方式是官网给出的变更日志:https://www.jacoco.org/jacoco/trunk/doc/changes.html 可以看到 0.8.11 版本开始支持了 jdk21。 0.8.9 版本支持了 jdk19 和 jdk20。 0.8.8 版本支持了 jdk17 和 jdk18。
综上,白盒测试和黑盒测试的主要区别在于测试者对系统内部结构的了解程度。白盒测试关注程序内部逻辑和代码覆盖率,而黑盒测试则关注系统的功能和用户体验。
定义:指测试对需求的覆盖程度,通常的做法是将每一条分解后的软件需求和对应的测试用例建立一对多的映射关系,最终目标是保证测试可以覆盖每个需求
不是所有被覆盖的代码都会得到监测,由于没有得到足够的监测,因此一些即使被触发的漏洞也会在传播过程中没有到达监测点上。
白盒测试又称为结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法。盒子指的是被测试的软件,白盒指的是盒子是可视的,即清楚盒子内部的东西以及里面是如何运作的。"白盒"法全面了解程序内部逻辑结构,对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。
白盒测试是一种软件测试方法,它检查程序内部的逻辑结构。在白盒测试中,测试用例是基于程序的内部代码和逻辑来设计的。下面是几种常见的白盒测试用例设计方法的概念解释以及它们对应的Java代码示例。
由于软件中普遍存在的错误,全世界都见证了一些灾难性事件。2008年在英国希思罗机场5号航站楼开业。工程师对终端的工作充满信心,这与他们的严格测试标准有关。由于行李处理系统在现实情况运行时陷入了瘫痪,导致系统完全关闭。在接下来的10天里,大约42000个行李箱变成了无主之物,顺带着取消了500多次航班。最终的结果是将事故归因于工程师未能对可能的实际场景进行测试覆盖测试。
① 属性覆盖前提 : 在父类中使用 open 修饰的属性 , 可以在子类中被覆盖 ;
无线AP(Access Point)网络覆盖是现代无线网络中的重要组成部分。它提供了无线信号的传输和接收功能,使用户能够在无线网络中进行通信和访问互联网。针对不同的需求和场景,存在两种常见的无线AP网络覆盖组网方式:中小型的无线覆盖组网方式和大范围的无线覆盖组网方式。本文将详细介绍这两种组网方式的特点、优势和应用场景。
MinIO 是全球领先的对象存储先锋,在标准硬件上,读/写速度上高达183 GB / 秒 和 171 GB / 秒。MinIO用作云原生应用程序的主要存储,与传统对象存储相比,云原生应用程序需要更高的吞吐量和更低的延迟。通过添加更多集群可以扩展名称空间,更多机架,直到实现目标。同时,符合一切原生云计算的架构和构建过程,并且包含最新的云计算的全新的技术和概念。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,即清楚盒子内部的东西以及里面是如何运作的。"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。
大家好,又见面了,我是你们的朋友全栈君。 白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。六种覆盖标准发现错误的能力呈由弱到强的变化:
上周 JAVA代码覆盖率工具JaCoCo-原理篇 简单介绍了JaCoCo其生成覆盖率的基本原理,这周的实践篇的主要内容就是将原理应用到实践中,本篇内容全部都是具体的项目使用实战经验,这里分享给大家,共勉~ 一、覆盖率项目中使用介绍 本节开始详细介绍下项目中的JaCoCo实战经验。 下图是覆盖率在实际在项目中的主要实施点: 分别详细介绍下: 1.1 确定插桩方式 Android项目只能使用JaCoCo的离线插桩方式。 为什么?主要是因为Android覆盖率的特殊性: 一般运行在服务器java程序的插桩可
测试覆盖率和代码覆盖率是衡量代码有效性的最流行方法。这些术语有时会同时出现,因为它们的基本原理相同。但是它们并不是那么一致。很多时候,测试团队和开发团队对这两个术语的使用感到困惑。下面详细讨论代码覆盖率和测试覆盖率之间的区别的原因。
覆盖率分为代码覆盖率和功能覆盖率,代码覆盖率常用来作为测试好坏的指标,包含:行覆盖率、条件覆盖率、fsm状态覆盖率、翻转覆盖率和分支(branch)覆盖率5种。
最近做了一些关于代码覆盖率工具的调查,对一些主流的代码覆盖率的工具比如 Gcov,JaCoCo,Istanbul 等都做了一些实践和持续集成的工作,也有了一定的了解。
我是一名中间件 QA,我对应的研发团队是有赞 PaaS,目前我们团队有很多产品是使用 go 语言开发,因此我对 go 语言项目的单测覆盖率、集成以及增量测试覆盖率统计与分析做了探索。
在一个芯片验证的工程中,通常以代码覆盖率和功能覆盖率来体现验证是否完备,而代码覆盖率包括:行,状态机,翻转,条件,分支覆盖率。为了保证验证的充分性,我们要尽可能保证这五种类型的代码覆盖率达到100%。
题目地址:https://leetcode-cn.com/problems/jump-game-ii/
精准测试是近些年比较热的一个话题。笔者一直认为这是一种治疗大厂“富贵病”的“靶向药”。对于一般公司而言,面对的问题是自动化测试用例过少,甚至没有的问题,还没到测试用例过剩需要挑拣的地步。因此,如果没有过万的接口自动化用例,可以不用拉到底,只了解一下代码覆盖率统计即可。 精准测试的一个技术基础,就是覆盖率统计。通过覆盖率报告,可以了解到一次执行过程,对被测应用的代码覆盖情况,包括类、方法、代码行等。再通过代码增量的统计,就可以了解本次新增代码的覆盖率情况。
白盒测试是一种测试方法,通过检查代码的内部结构和逻辑来设计测试用例,确保代码在各个方面都能正确运行。白盒测试中有几种常见的覆盖标准,包括语句覆盖、分支覆盖、判定覆盖和路径覆盖。我们来分别解释这些概念。
测试覆盖率是一种度量指标,指的是在运行一个测试集合时,代码被执行的比例。它的一个主要作用就是告诉我们有多少代码测试到了。其实更严格地说,测试覆盖率应该叫代码覆盖率,只不过大多数情况它都是被用在测试的场景下,所以在很多人的讨论中,并不进行严格的区分。
编写 HDL 通常是 FPGA 开发中耗时最少的部分,最具挑战性和最耗时的部分可能是验证。根据最终应用程序,验证可能非常简单,也可能非常复杂,简单的话只需对大多数功能进行检查或执行完全独立开发的测试平台来演示功能和代码覆盖率。
在金庸的武侠小说中,提到了「中国的六大门派」,分别有:武当、华山、峨眉、少林、昆仑和崆峒派。
推论 设图 无孤立点, 是 的一个匹配, 是 的一个边覆盖,则 ,且当等号成立时, 是 的完美匹配, 是 的最小边覆盖。
作者简介 王幸福,携程酒店研发部资深测试开发工程师,负责酒店测试框架和测试工具的研发。技术狂热者,热衷于开源项目,利用创新去提高测试工作的效率。 一、前言 携程目前很多的框架和项目都在往Java技术栈上进行迁移。在这个过程中我们遇到很多的挑战和困难,为此酒店测试在原有的测试体系的基础上做了大量的工作,构建了一整套卓有成效的质量保障体系。所以,在本文的开始部分会给大家介绍下目前酒店测试体系的一些情况,后面则会详细的介绍下这个体系的一部分-Java覆盖率统计平台。 二、何为360度质量保障体系 我们常见的测试流
对于仿真的激励测试,其实会有代码覆盖率一说,不过我们平常可能更多是功能覆盖,代码覆盖估计关注的人要少些,不过作为相对系统性的学习,还是大概看下这个功能吧~
1.在进行功能验证时,给设计添加激励信号,查看仿真结果,需要考虑覆盖率的问题。覆盖率分为代码覆盖率(code coverage)和功能覆盖率(function coverage)。功能覆盖率就是检查设计的功能是否完善,需要考虑很多不同的情况,是使用System verilog的重点内容。代码覆盖率是检查代码是否存在冗余,检查所有的代码是否都已经执行,状态机所有的状态是否都有到达,检查 if else 和 case 条件语句的条件是否都有使用。防止一些不必要的代码浪费芯片面积,毕竟面积就意味着钱。我们这里只讨论代码覆盖率。
领取专属 10元无门槛券
手把手带您无忧上云