首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    利用 Pandas 的 transform 和 apply 来处理组级别的丢失数据

    在这种情况下,你通常会用你猜测的最佳值(即,可用数据的平均值或中等值)替换丢失的值。 让我们快速回顾一下为什么应该小心使用此方法。假设你调查了 1000 个男孩和 1000 个女孩的体重。...女孩的 KDE 有两个驼峰。有人可能会得出结论,在我们的样本中有一个子组的女孩体重较重。因为我们预先构建了分布,所以我们知道情况并非如此。但如果这是真实的数据,我们可能会从中得出错误的结论。 ?...男孩和女孩的体重 KDE,我们用样本均值替换缺失的数据(下附代码) # PLOT CODE: sns.set_style('white') fig, ax = plt.subplots(figsize=...按年龄、性别分组的体重 KDE 用各组的平均值代替缺失值 当顺序相关时,处理丢失的数据 ?...为了减轻丢失数据的影响,我们将执行以下操作: 按国家分组并重新索引到整个日期范围 在对每个国家分组的范围之外的年份内插和外推 1.按国家分组并重新索引日期范围 # Define helper function

    1.9K10

    每日一问_02_使用Pandas做简单的数据处理分析

    提示: 假设 CSV 文件内容如下: 姓名,年龄,性别,身高,体重 张三,25,男,175,70 李四,30,男,180,75 王五,28,女,165,55 赵六,35,男,170,80 考察点: pandas...然后,可以进行一些简单的数据分析,比如计算平均年龄、身高等。 实战应用场景分析:这种任务常见于数据处理和分析领域。...# 数据分析 # 计算平均年龄、身高和体重 average_age = df['年龄'].mean() average_height = df['身高'].mean() average_weight =...df['体重'].mean() print(f"\n平均年龄:{average_age} 岁") print(f"平均身高:{average_height} cm") print(f"平均体重:{average_weight...最后,进行了一些简单的数据分析,计算了平均年龄、身高和体重,并将结果输出。 拓展分享:这个例子展示了如何使用pandas库进行数据的读取、清洗和分析。

    15930

    Pandas实用手册(PART III)

    一行描述数值栏位 当你想要快速了解DataFrame里所有数值栏位的统计数据(最小值、最大值、平均和中位数等)时可以使用describe函数: 你也可以用取得想要关注的数据一节的技巧来选取自己关心的统计数据...: 找出栏位里所有出现过的值 针对特定栏位使用unique函数即可: 分组汇总结果 很多时候你会想要把DataFrame里头的样本依照某些特性分门别类,并依此汇总各组(group)的统计数据。...让我们再次拿出Titanic数据集: 你可以将所有乘客(列)依照它们的Pclass栏位值分组,并计算每组里头乘客们的平均年龄: 你也可以搭配刚刚看过的describe函数来汇总各组的统计数据: 你也可以依照多个栏位分组...这时你可以使用transform函数: 此例将所有乘客依照性别Sex分组之后,计算各组的平均年龄Age,并利用transform函数将各组结果插入对应的乘客(行)里头。...对时间数据做汇总 给定一个跟时间相关的DataFrame: 你可以用resample函数来一招不同时间粒度汇总这个时间DataFrame: 此例中将不同年份(Year)的样本分组,并从每一组的栏位A中选出最大值

    1.8K20

    pandas分组聚合转换

    分组的一般模式 分组操作在日常生活中使用极其广泛: 依据性别性别分组,统计全国人口寿命寿命的平均值平均值 依据季节季节分组,对每一个季节的温度温度进行组内标准化组内标准化 从上述的例子中不难看出,想要实现分组操作...,比如根据性别,如果现在需要根据多个维度进行分组,只需在groupby中传入相应列名构成的列表即可。...,如果希望通过一定的复杂逻辑来分组,比如根据学生体重是否超过总体均值来分组,同样还是计算身高的均值。...构造两列新特征来分别表示样本所在性别组的身高均值和体重均值: gb.transform('mean').head() # 传入返回标量的函数也是可以的 Height Weight 0 159.19697...当apply()函数与groupby()结合使用时,传入apply()的是每个分组的DataFrame。这个DataFrame包含了被分组列的所有值以及该分组在其他列上的所有值。

    12010

    Python数据分析 | Pandas数据分组与操作

    如电商领域可能会根据地理位置分组,社交领域会根据用户画像(性别、年龄)进行分组,再进行后续的分析处理。...Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。...聚合操作可以用来求和、均值、最大值、最小值等,下表为Pandas中常见的聚合操作: [1528a59f449603fc3885aa6e32616830.png] 例如,计算不同公司员工的平均年龄和平均薪水...,示例代码如下: data.groupby("company").agg('mean') 或者针对不同字段做不同的计算处理,例如,要计算不同公司员工的平均年龄、薪水的中位数。...transform:会对每一条数据求得相应的结果,同一组内的样本会有相同的值,组内求完均值后会按照原索引的顺序返回结果 2.4 apply方法 之前我们介绍过对Dataframe使用apply进行灵活数据变换操作处理的方法

    2.9K41

    数据导入与预处理-第6章-04pandas综合案例

    数据导入与预处理-第6章-04pandas综合案例 1 pandas综合案例-运动员信息数据 1.1 查看数据 1.2 数据处理与分析 1 pandas综合案例-运动员信息数据 1.1 查看数据 导入数据...# 筛选出国籍为中国的运动员 all_data = all_data[all_data['国籍'] == '中国'] all_data 输出为: 查看DataFrame类对象的摘要 # 查看DataFrame...计算女篮球运动员的平均体重 # 计算女篮球运动员的平均体重 female_weight = female_data['体重'].dropna() female_weight = female_weight.apply...: 使用3σ原则检测男篮运动员的体重数据 # 使用3σ原则检测男篮运动员的体重数据 male_weight = basketball_data[basketball_data['性别'] == '...男'] three_sigma(male_weight['体重/kg']) 输出为: 以性别分组,对各分组执行求平均数操作,并要求平均数保留一位小数 # 以性别分组,对各分组执行求平均数操作,并要求平均数保留一位小数

    90720

    python数据分析——数据分类汇总与统计

    例如,我们可以计算每个性别学生的平均年龄: age_mean = df.groupby('Gender')['Age'].mean() print(age_mean) 除了分类汇总和统计分析,我们还可以使用...grouped = df.groupby('Product') 聚合操作:对每个分组进行聚合操作,例如计算每个组的总和、平均值、最大值等。...按列分组 按列分组分为以下三种模式: df.groupby(col),返回一个按列进行分组的groupby对象; df.groupby([col1,col2]),返回一个按多列进行分组的groupby...sum():计算每个分组中的所有值的和。 mean():计算每个分组中的所有值的平均值。 median():计算每个分组中的所有值的中位数。 min():计算每个分组中的所有值的最小值。...我们可以用分组平均值去填充NA值: 也可以在代码中预定义各组的填充值。

    14610

    一文归纳Python特征生成方法(全)

    1 特征生成的作用 特征生成是特征提取中的重要一步,作用在于: 增加特征的表达能力,提升模型效果;(如体重除以身高就是表达健康情况的重要特征,而单纯看身高或体重,对健康情况表达就有限。)...3.1 聚合方式 聚合方式是指对存在一对多的字段,将其对应多条记录分组聚合后统计平均值、计数、最大值等数据特征。...如以上述数据集,同一cust_no对应多条记录,通过对cust_no(客户编号)做分组聚合,统计C1字段个数、唯一数、平均值、中位数、标准差、总和、最大、最小值,最终得到按每个cust_no统计的C1平均值...','median','std','sum','max','min']) 此外还可以pandas自定义聚合函数生成特征,比如加工聚合元素的平方和: # 自定义分组聚合统计函数 def x2_sum(...np.min(df[['C1_fir','C1']], axis = 1) df['C1-C1_fir_abs'] = np.abs(df['C1-C1_fir']) df.head() 排名编码特征 按特征值对全体样本进行排序

    98320

    pandas技巧6

    本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...、右侧的行索引index作为连接键(用于index的合并) 分组 groupby 拆分:groupby,按照某个属性column分组,得到的是一个分组之后的对象 应用:对上面的对象使用某个函数,可以是自带的也可以是自己写的函数...,通过apply(function) 合并:最终结果是个S型数据 如何找出每一种职业的平均年龄?...并按照平均年龄从大到小排序?...分组用groupby 求平均mean() 排序sort_values,默认是升序asc 操作某个列属性,通过属性的方式df.column df.groupby("occupation").age.mean

    2.6K10

    python数据分析——数据分类汇总与统计

    例如,我们可以按照学生的性别进行分组,并计算每个性别的学生人数: gender_count = df.groupby('Gender')['Name'].count() print(gender_count...例如,我们可以计算每个性别学生的平均年龄: age_mean = df.groupby('Gender')['Age'].mean() print(age_mean) 除了分类汇总和统计分析,我们还可以使用...1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...我们可以用分组平均值去填充NA值: 也可以在代码中预定义各组的填充值。由于分组具有一个name属性,所以我们可以拿来用一下: 四、数据透视表与交叉表 4.1....五、数据采样 Pandas中的resample()是一个对常规时间序列数据重新采样和频率转换的便捷的方法,可 以对原样本重新处理,其语法格式如下: resample(rule, how=None,

    83910

    数据处理(三)| 深入数据预处理:提升机器学习模型性能的关键步骤

    import pandas as pdfrom sklearn.preprocessing import StandardScalerX = pd.DataFrame({ 'x1': [1, 2,...import pandas as pdfrom sklearn.preprocessing import MinMaxScalerX = pd.DataFrame({ 'x1': [1, 2, 3...Pandas:数据分析利器Pandas是专为结构化数据设计的库,核心是DataFrame(二维表格)和Series(一维序列),让数据清洗和分析变得像Excel一样简单Series:一维带标签数组,支持自动对齐...DataFrame:二维表格,支持灵活的数据操作(排序、聚合、清洗)。...25 北京 # 1 李四 30 上海 # 2 王五 28 深圳数据操作:查询、排序、聚合# 查询年龄大于26岁的人 df_filtered = df[df['年龄'] > 26] # 按城市分组计算平均年龄

    12810

    Python数据分析 | Pandas数据变换高级函数

    pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 本篇为『图解Pandas数据变换高级函数』。...一、Pandas的数据变换高级函数 ----------------- 在数据处理过程中,经常需要对DataFrame进行逐行、逐列和逐元素的操作(例如,机器学习中的特征工程阶段)。...数据集如下所示,各列分别代表身高(height)、体重(weight)、是否吸烟(smoker)、性别(gender)、年龄(age)和肤色(color)。...(3)按行计算BMI指数 那我们实际应用过程中有没有(axis=1)的情况呢?...例如,我们要根据数据集中的身高和体重计算每个人的BMI指数(体检时常用的指标,衡量人体肥胖程度和是否健康的重要标准),计算公式是:体重指数BMI=体重/身高的平方(国际单位kg/㎡)。

    1.4K31

    如何用Python分析泰坦尼克号生还率?

    # 数据集信息,包含数据集大小,列名,类型 data_t.info() data_t.columns.values pandas.core.frame.DataFrame'> RangeIndex...06 描述性统计 在这次旅行的 891 名乘客中,有 38% 的人活了下来,幸运儿。 所有旅客中,年龄最小的只有 0.4 岁,最大的有 80 岁,平均年龄在 28 岁左右。...data_t = data_t.drop(['Ticket','Cabin'],axis='columns') data_t.info() pandas.core.frame.DataFrame...所谓离散化,指的是将某个变量的所在区间分割为几个小区间,落在同一个区间的观测值用同一个符号表示,简单理解就是将属于统一范围类的观测值分为一组。然后分组观察。...总结 本次分析主要探寻泰坦尼克号上的生还率和各因素(客舱等级、年龄、性别、上船港口等)的关系。 样本数量为 891,海难发生后,生还者还剩 342 人,生还率为 38%。

    80231

    Python 使用pandas 进行查询和统计详解

    但是Pandas 是如何进行查询和统计分析得嘞, let’s go : 数据筛选查询 通过列名索引筛选数据: import pandas as pd data = {'name': ['Tom', '...df[df['age'] >= 20] # 选取性别为女的记录 df[df['gender'] == 'F'] 数据统计分析 Pandas 提供丰富的统计函数,可以方便地进行数据分析。...描述性统计分析: # 统计数值型数据的基本描述性统计信息 df.describe() # 统计各属性的非空值数量 df.count() # 统计各属性的平均值 df.mean() # 统计各属性的方差...df.var() # 统计各属性的标准差 df.std() 分组统计分析: # 按照性别分组,统计年龄均值 df.groupby('gender')['age'].mean() # 按照性别和年龄分组,...], axis=1) 纵向(按行)合并 DataFrame: # 创建一个新的 DataFrame other_data = {'name': ['Kate', 'Jack'],

    32910

    懂Excel轻松入门Python数据分析包pandas(二十):数值条件统计

    继续使用泰坦尼克号沉船事件的乘客名单作为例子: - pclass:船舱等级 - survived:是否生还 - fare:票价 - sex:性别 - home.dest:住址 如果你看过上一节文章,想必应该理解到...当你按下回车,公式自动填充: 其他各种需求 当你理解了上面的思路,那么只要你熟悉 pandas 各种构造 bool 列的技巧,各种需求基本难不倒你。..."30岁以上 男女的人数": 一个个写,太麻烦了,直接条件筛选,分组统计: "男女高于各自性别的平均年龄的人数" - 有没有发现男性的人数与之前需求的人数很接近?...因为刚好男性的平均年龄在30岁左右 当然,还是可以直接分组统计的: "男女各自年龄最小的人的资料": - 他们都在 S 港口上船,同是三等舱 - 女生获救了,男生遇难了 "男女各自年龄最大的人的资料..."看看各个年龄段,男女的生还情况": - 简单让 pandas 按数据中的年龄,平均划分成4段 - 大概可以看出,男性的生还率低于女性,特别是20到40岁这个年龄段 - 更多针对泰坦尼克号沉船事件数据的详细分析

    78220

    懂Excel轻松入门Python数据分析包pandas(二十):数值条件统计

    继续使用泰坦尼克号沉船事件的乘客名单作为例子: - pclass:船舱等级 - survived:是否生还 - fare:票价 - sex:性别 - home.dest:住址 如果你看过上一节文章,想必应该理解到...当你按下回车,公式自动填充: 其他各种需求 当你理解了上面的思路,那么只要你熟悉 pandas 各种构造 bool 列的技巧,各种需求基本难不倒你。..."30岁以上 男女的人数": 一个个写,太麻烦了,直接条件筛选,分组统计: "男女高于各自性别的平均年龄的人数" - 有没有发现男性的人数与之前需求的人数很接近?...因为刚好男性的平均年龄在30岁左右 当然,还是可以直接分组统计的: "男女各自年龄最小的人的资料": - 他们都在 S 港口上船,同是三等舱 - 女生获救了,男生遇难了 "男女各自年龄最大的人的资料..."看看各个年龄段,男女的生还情况": - 简单让 pandas 按数据中的年龄,平均划分成4段 - 大概可以看出,男性的生还率低于女性,特别是20到40岁这个年龄段 - 更多针对泰坦尼克号沉船事件数据的详细分析

    74530
    领券