首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python-科学计算-pandas-09-df列字符串操作2

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对列的每一个元素进行同样的字符串操作 今天讲其中的1个操作: split Part 1:目标 已知Df某列都是字符串,每一个字符串都有一个文件与其对应...后的文件类型 组合两者 加入到原来的Df中 修改前后文件名 Part 2:代码 import pandas as pd dict_1 = {"file_name": ["P10-CD1.txt",....str.split("-", expand=True),对列file_name的每个元素实行split("-")操作,理论上生成一个列表,expand=True表示将生成列表结果分为多个列 se_1..._1新增一列new_file_name 本文为原创作品

    50410

    Python-科学计算-pandas-14-df按行按列进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...- 数据格式为一个列表 - 列表中每一个元素为一个字典,每个字典对应前端表格的一行 - 单个字典的键为前端表格的列名,字典的值为前端表格每列取的值 简单来说就是要将一个Df转换为一个列表,该列表有特定的格式...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?...字典的键为列名,值为一个列表,该列表对应df的一个列 dict_fields = df_1.to_dict(orient='list') print(dict_fields) ? list对应结果 ?

    1.9K30

    Pandas数据分组的函数应用(df.apply()、df.agg()和df.transform()、df.applymap())

    3种方法: apply():逐行或逐列应用该函数 agg()和transform():聚合和转换 applymap():逐元素应用函数 apply()函数 介绍 apply函数是pandas里面所有函数中自由度最高的函数...axis=0,表示将一列数据作为Series的数据结构传入给定的function中 print(t1) t2 = df.apply(f, axis=1) print(t2) 输出结果如下所示...>>> type(df['score_math'].apply(np.mean)) pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply...()的特例,可以对pandas对象进行逐行或逐列的处理; 能使用agg()的地方,基本上都可以使用apply()代替。...注意:df.transform(np.mean)将报错,转换是无法产生聚合结果的 #将成绩减去各课程的平均分,使用apply、agg、transfrom都可以实现 >>> df.transform(lambda

    2.3K10

    df里怎么删除全部为0的列呀?

    一、前言 前几天在Python最强王者交流群【WYM】问了一个Pandas处理的问题,提问截图如下: 二、实现过程 这里【隔壁山楂】给了一份代码: df.dropna(axis=1, how=‘all...=0].index data.drop(columns=drop_cols, inpleace=True) 还有【郑煜哲·Xiaopang】也提供了一份代码,如下所示: cols = df.apply...(lambda x: all(x==0), axis=1) df = df.reindex(columns=cols) 方法还是很多的。...这篇文章主要盘点了一个Python网络爬虫+正则表达式处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【WYM】提问,感谢【隔壁山楂】、【猫药师Kelly】、【郑煜哲·Xiaopang】给出的思路和代码解析,感谢【dcpeng】等人参与学习交流。

    89730

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    5.7K21

    使用Python实现df的奇数列与偶数列调换位置,比如A列,B列,调换成B列,A列

    一、前言 前几天在Python铂金交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Python实现df的奇数列与偶数列调换位置,比如A列,B列,调换成B列,A列。 下面是原始内容。...in range(len(df.columns))]] 运行之后,结果如下图所示: 方法三 【月神】后来又给了一个方法,代码如下所示: import numpy as np import pandas...)), index=list(en.upper())) print('源数据') print(df) # 请补全代码 df = df[np.array((df.columns[1::2], df.columns...这篇文章主要盘点了使用Python实现df的奇数列与偶数列调换位置,比如A列,B列,调换成B列,A列的问题,文中针对该问题给出了具体的解析和代码演示,一共3个方法,欢迎一起学习交流,我相信还有其他方法,...最后感谢【瑜亮老师】出题,感谢【瑜亮老师】、【kiddo】、【月神】给出的代码和具体解析,感谢【冯诚】、【dcpeng】等人参与学习交流。 小伙伴们,快快用实践一下吧!

    1.2K30

    盘点一个Pandas空的df追加数据的问题

    想建一个空的df清单数据,然后一步步添加行列数据 但是直接建一个空的df新增列数据又添加不成功 得先有一列数据才能加成功 这个是添加的方式有问题 还是这种创建方法不行?...二、实现过程 这里【隔壁山楂】给了一个指导:不是说先有列才行,简单来说是得先有行才能继续添加列数据,所以你在空df中添加新列要事先增加预期的行数。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...------------------- End ------------------- 往期精彩文章推荐: 分享一个批量转换某个目录下的所有ppt->pdf的Python代码 通过pandas读取列的数据怎么把一列中的负数全部转为正数...Pandas实战——灵活使用pandas基础知识轻松处理不规则数据 Python自动化办公的过程中另存为Excel文件无效?

    28010

    Java长度为0的阻塞对列-TransferQueue详解

    顾名思义,阻塞就是发生在元素从一个线程transfer到另一个线程的过程中,它有效地实现了元素在线程之间的传递(以建立Java内存模型中的happens-before关系的方式)。...TransferQueue还包括了其他的一些方法:两个tryTransfer方法,一个是非阻塞的,另一个带有timeout参数设置超时时间的。...SynchronousQueue的队列长度为0,最初我认为这好像没多大用处,但后来我发现它是整个Java Collection Framework中最有用的队列实现类之一,特别是对于两个线程之间传递元素这种用例...考虑到executor在并发编程中的重要性,你就会理解添加这个实现类的重要性了。...Java 5中的SynchronousQueue使用两个队列(一个用于正在等待的生产者、另一个用于正在等待的消费者)和一个用来保护两个队列的锁。

    95631

    如何让pandas根据指定列的指进行partition

    ##解决方案 朴素想法 最朴素的想法就是遍历一遍原表的所有行,构建一个字典,字典的每个key是title,value是两个list。...于是我搜索了How to partition DataFrame by column value in pandas?...直接用df1 = df[df["Sales"]>=s]这样的语句就可以完成。 但是这在我们的场景上并不太适用。当然,可以提前遍历一遍把title做成集合再循环遍历,不过这也不是很pythonic。...groupby听着就很满足我的需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的列中的元素。...df.groupby('ColumnName')可以进行遍历,结果是一个(name,subDF)的二元组,name为分组的元素名称,subDF为分组后的DataFrame 对df.groupby('ColumnName

    2.7K40

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...后来【瑜亮老师】也给了一个代码,如下:df.loc[[df.点击.idxmax()]],也算是一种方法。 顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    Pandas库的基础使用系列---获取行和列

    我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..

    63700

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    Pandas vs Spark:获取指定列的N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到的获取指定列的多种实现做以对比。...无论是pandas的DataFrame还是spark.sql的DataFrame,获取指定一列是一种很常见的需求场景,获取指定列之后可以用于提取原数据的子集,也可以根据该列衍生其他列。...:Spark中的DataFrame每一列的类型为Column、行为Row,而Pandas中的DataFrame则无论是行还是列,都是一个Series;Spark中DataFrame有列名,但没有行索引,...在Spark中,提取特定列也支持多种实现,但与Pandas中明显不同的是,在Spark中无论是提取单列还是提取单列衍生另外一列,大多还是用于得到一个DataFrame,而不仅仅是得到该列的Column类型...03 小结 本文分别列举了Pandas和Spark.sql中DataFrame数据结构提取特定列的多种实现,其中Pandas中DataFrame提取一列既可用于得到单列的Series对象,也可用于得到一个只有单列的

    11.5K20
    领券