由于Account字段被pandas“理解”成了数值类型的(可以通过df.dtypes查看),所以结果中出现了Account列。...目标4:设置我们关心的汇总字段,此处设置price,去掉Account和Quantity 1.pandas实现 pd.pivot_table(df, index=['Manager', 'Rep'],...目标7:使用行索引和列索引,同时查看多个字段(Price,Quality)的汇总值 1.Pandas实现 pd.pivot_table(df, index=['Manager', 'Rep'], columns...值得一提的是,可以通过“列”的位置,“数值”和“Product”的上下关系,控制显示的格式,下面显示的结果和pandas的结果一致,读者可以调整下看看效果。 ?...目标9:对Price和Quantity使用不同的汇总方式 1.pandas实现 通过字典的方式,为不同的字段传入不同的聚合函数。
在上述简介中,有两个关键词值得注意:排列和汇总,其中汇总意味着要产生聚合统计,即groupby操作;排列则实际上隐含着使汇总后的结果有序。...值得补充的是:实际上为了完成不同性别下的生还人数,我们完全可以使用groupby(sex, survived)这两个字段+count实现这一需求,而数据透视表则仅仅是在此基础上进一步完成行转列的pivot...首先,给出一个自定义的dataframe如下,仅构造name,sex,survived三个字段,示例数据如下: ? 基于上述数据集实现不同性别下的生还人数统计,运用pandas十分容易。...可以明显注意到该函数的4个主要参数: values:对哪一列进行汇总统计,在此需求中即为name字段; index:汇总后以哪一列作为行,在此需求中即为sex字段; columns:汇总后以哪一列作为列...上述需求很简单,需要注意以下两点: pandas中的pivot_table还支持其他多个参数,包括对空值的操作方式等; 上述数据透视表的结果中,无论是行中的两个key("F"和"M")还是列中的两个key
1,制作数据透视表 制作数据透视表的时候,要确定这几个部分:行字段、列字段、数据区,汇总函数。数据透视表的结构如图1所示。...方法制作数据透视表,商品作为行字段,品牌作为列字段,销售额放在数据区,这样设置: pt1 = df.pivot_table(index='商品', columns='品牌', values='销售额')...图4 商品销售数据透视表 可以看到这两个数据透视表是有缺失值的,pivot_table有一个参数fill_value,就是用来填充这些缺失值的,例如: df.pivot_table(index='商品...这个统计需要用到以下两个参数: q margins,设定是否添加汇总列,一般设置为True。 q margins_name,汇总列的名称。...图12 仅保留汇总数据某些行和列 3,使用字段列表排列数据透视表中的数据 数据透视表是一个DataFrame,所以可以用sort_values方法来按某列排序,示例代码如下: pt = df.pivot_table
在python中我们可以通过pandas.pivot_table函数来实现数据透视表的功能。...本篇文章介绍了pandas.pivot_table具体的使用方法,在最后还准备了一个备忘单,希望能够帮助你记住如何使用pandas的pivot_table。 1....当然,行索引和列索引都可以再设置为多层,不过,行索引和列索引在本质上是一样的,大家需要根据实际情况合理布局。 6....添加多个聚合列 # 按客票级别分组,每组对两个列进行聚合:“是否存活”和“船票价” table = pd.pivot_table(df, index=["pclass"], values=["survived...添加汇总项 # 按行、按列进行汇总,指定汇总列名为“Total”,默认名为“ALL” table1 = pd.pivot_table(df, index="sex", columns="pclass",
导读 Excel作为Office常用办公软件之一,其在一名数据分析师的工作日常中也占有一定地位,比如个人就常常倾向于依赖Excel完成简单的数据处理和可视化作图,其中数据处理部分则主要是运用内置函数+数据透视表两大部分...至此,我们可以发现数据透视表中实际存在4个重要的设置项: 行字段 列字段 统计字段 统计方式(聚合函数) 值得指出的是,以上4个要素每一个都可以不唯一,例如可以拖动多个字段到行/列字段中形成二级索引,...注意这里的缺失值是指透视后结果中可能存在的缺失值,而非透视前的原表中缺失值 margins : 指定是否加入汇总列,布尔值,默认为False,体现为Excel透视表中的行小计和列小计 margins_name...: 汇总列的列名,与上一个参数配套使用,默认为'All',当margins为False时,该参数无作用 dropna : 是否丢弃汇总结果中全为NaN的行或列,默认为True。...那么二者的主要区别在于: pivot仅适用于数据变形,即由长表变为宽表,相当于对数据进行了重组;而pivot_table除了数据重组外,还有一个额外的效果,即数据聚合,即若重组后对应的行标签和列标签下取值不唯一
四、如何快速查看数据的统计摘要 区别df.describe()和df.info() df.describe():默认情况下,它会为数值型列提供中心趋势、离散度和形状的统计描述,包括计数、均值、标准差、最小值...十、数据透视表应用 透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。...透视表是一种强大的数据分析工具,它可以快速地对大量数据进行汇总、分析和呈现。 ...pivot_table(data, values=None, index=None, columns=None) Index: 就是层次字段,要通过透视表获取什么信息就按照相应的顺序设置字段 Values...: 可以对需要的计算数据进⾏筛选 Columns: 类似Index可以设置列层次字段,它不是⼀个必要参数,作为⼀种分割数据的可选⽅式。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...看每个城市(行)每类商品(列)的总销售量,并汇总计算 result4 = pd.pivot_table(data,index=['城市'],columns=['商品类别'],aggfunc=[np.sum...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...、列: 参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table?...) result4.head() 总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法
[班级]列变成小数。其实是小数也不会影响结果。 数据透视 接下来就非常简单,直接使用 pandas 做出透视表。 使用 pd.pivot_table ,即可快速生成透视表。...其中参数 index ,则是结果左边的行分类字段——[班级]。 参数 margins ,表示生成一个汇总行。 参数 margins_name ,则是汇总行的名字。...但是,看一下结果,却发现了一些问题: 列的顺序与原数据不一样了。 结果需要把汇总列放到最右边。...cols.append(cols.pop(0)) 把[汇总]移到列表的最后。 pv_df=pv_df[cols] 把透视表的字段调整为我们需要的顺序。...pandas 中的 pivot_table 快速得到各种方式的分组汇总。
正好 pandas 的 pivot_table 也是与 Excel 透视表对应。本文简单教你入门使用 pandas 完成透视表功能。...行标签,survived 字段拖入 列标签 - 还需要统计人数,人名总是有的,因此把 name 字段拖入 数值区域 - 透视表立刻出结果,行标签 放入的字段的唯一值,被显示在透视表左侧。...下面是 Excel 透视表结果: 接着是 pandas 实现: - 修改 index 参数为 pclass,即可按船舱等级汇总 - 行9:不想再重复编写那段"非人"看的占比计算,直接调用一个自定义的函数...很简单,pivot_table 中的大部分参数都可以放入多个字段(跟 Excel 透视表操作一样): - index 参数传入多个字段的列表 从结果看到,每个等级的船舱还是"女性比男性更可能生还" "...相比较,有小伙伴一起上船的乘客(上图结果的第二行),生还人数比例就比较高 > 上面结果的行列显示不太好看(isgroup 显示 True 和 False,survived 显示 0 和 1),你知道怎么把他们替换成友好的中文内容吗
最近群里小伙伴提出了几个问题,如何用pandas实现execl中的汇总行。 关于这个问题,群里展开了激烈的讨论,最终经过梳理总结出了以下两个解决方法。...一种是当做透视时直接使用参数margins,另一种是当无透视时手动造出汇总行。 pivot_table 问题(群成员"浮生如梦"): 我想统计一月到十二月的所有数据应该怎么写呢?...解决方法 用法:sum()、pivot_table 如果要对数据按行方向求和,直接使用sum()函数即可,设置参数axis=1(默认是axis=0列方向对列数据求和),然后将横向求和结果赋给一个新的字段...: 7, 2: 6, 3: 7, 4: 6, 5: 8}} df = pd.DataFrame(kv) 解决方法 用法:groupby、concat、sum、transform 该方法通过几种用法的组合间接实现了行和列数据汇总...对列数据的汇总求和比较取巧,使用groupby实现了对整列数据求和,求和sum函数中需设置numeric_only参数,只对数值求和。得到列汇总结果后将其与原数据进行concat纵向拼接。
转换之后,长数据结构保留了原始宽数据中的Name、Conpany字段,同时将剩余的年度指标进行堆栈,转换为一个代表年度的类别维度和对应年度的指标。(即转换后,所有年度字段被降维化了)。...+……~class #这一项是一个转换表达式,表达式左侧列 #出要保留的主字段(即不会被扩宽的字段,右侧则是要分割的分类变量,扩展之后的 #宽数据会增加若干列度量值...从以上代码的复杂度来看,reshape2内的两个函数melt\dcast和tidyr内的两个函数gather\spread相比,gather\spread这一对函数完胜,不愧是哈神的最新力作,tidyr...Python中我只讲两个函数: melt #数据宽转长 pivot_table #数据长转宽 Python中的Pandas包提供了与R语言中reshape2包内几乎同名的melt函数来对数据进行塑型...R语言: reshape2::melt reshape2::dcast tidyr::gather tidyr::spread Python: pandas-melt pandas-pivot_table
数据透视表是将数据进行分类汇总,统计分析的强大工具。...通过设置新的行标签index和列标签columns,指定需要被统计分析的数值values,指定采用的统计聚合函数aggfunc等,利用数据透视表可以对原始数据表进行多种视角的分析和不同方式的重塑,因而称之为透视表...在Python的Pandas中,可以用groupby方法或pivot_table函数完成分类汇总,实现数据透视表的功能。groupby是先分组,然后选择聚合函数,生成透视表。...一,Excel中的数据透视表 Excel中的数据透视表可以设置行(index),列(columns),值(values),并通过值字段设置选择聚合函数。图形界面操作相对简单,但不够灵活和强大。 ?...二,pivot_table数据透视表 相比较Excel中的数据透视表,使用pandas的pivot_table函数来实现数据透视表,将十分灵活和强大。 构造dataframe数据 ?
apply() 函数允许在 DataFrame 的行或列上应用自定义函数,以实现更复杂的数据处理和转换操作。...df['Age'] = df['Age'].apply(lambda x: x * 2) 5、连接DataFrames 这里的连接主要是行的连接,也就是说将两个相同列结构的DataFrame进行连接...它根据一个或多个列的值对数据进行重新排列和汇总,以便更好地理解数据的结构和关系。...将数据列转换为分类类型有助于节省内存和提高性能,特别是当数据列中包含有限的不同取值时。...() 是 Pandas 中用于执行独热编码(One-Hot Encoding)的函数。
相信大家都用在Excel当中使用过数据透视表(一种可以对数据动态排布并且分类汇总的表格格式),也体验过它的强大功能,在Pandas模块当中被称作是pivot_table,今天小编就和大家来详细聊聊该函数的主要用途...导入模块和读取数据 那我们第一步仍然是导入模块并且来读取数据,数据集是北美咖啡的销售数据,包括了咖啡的品种、销售的地区、销售的利润和成本、销量以及日期等等 import pandas as pd def...”两个,代码如下 df.pivot_table(index=['region', 'product_category']) output 进阶的操作 上面的案例当中,我们以地区“region”为索引看到了各项销售指标...用来设置列层次的字段,当然它并不是一个必要的参数,例如 df.pivot_table(index=['region'], values=['sales'], aggfunc='sum', columns...,我们在values当中添加“cost”的字段,代码如下 df.pivot_table(index=['region'], values=['sales', 'cost'], aggfunc='sum'
统计数据来说,有时点数据和时期数据。通常情况下,会进行两期数据的比较,现整理一个两期数据比较的场景应用。...# 数据预处理,指标归并、数据删除 def pre_handle_data(df): # 预处理数据 return df 3、由于当前处理的数据是单机构的数据,想进行汇总查看整体数据情况...使用pivot_table进行汇总,接着使用reset_index转化为明细项进行合并到源数据中。...def hz_data(df): # 分产品、全部汇总 hz_list = [] table = pd.pivot_table(df,values=['数据值'],index=...','数据批次'],inplace=True) # on为合并依赖字段 df = pd.merge(cur,pre,how='outer',on=[ '行指标编码', '行指标名称',
,并将该列命名为y,m,同时计算该组的销售量 group()函数分组但不汇总,groups分组同时汇总。...因为这里只用到了交易信息的Client和Amount字段,所以只选出这两个字段并按照Client字段分组。...'date']两个字段相同的字段,即为修改过的字段。...B7:定义b,c两个变量,b作为OPEN字段的初始值, B8:建立新表,其中STOCKID为A6的STOCKID,将时间序列B5按顺序插入新序表,作为新字段DATE,c作为OPEN字段,将B6中的ENTER...A3中 A7: A.pivot(g,…;F,V;Ni:N'i,…),以字段/表达式g为组,将每组中的以F和V为字段列的数据转换成以Ni和N'i为字段列的数据,以实现行和列的转换。
通过对数据的初步观测,这个数据样本一共有 891 行 * 12 列数据,字段包含: ‘PassengerId(乘客id)’, ‘Survived(是否活下来)’, ‘Pclass(船舱等级)’, ‘Name...在 pandas 中,同样提供了pandas.pivot_table 函数来实现这些功能。...在接下来的分析中,我们会多次用到这个函数,所以先来熟悉下下这个函数: pandas.pivot_table 函数中包含四个主要的变量,以及一些可选择使用的参数。...四个主要的变量分别是数据源 data,行索引 index,列 columns,和数值 values。可选择使用的参数包括数值的汇总方式,NaN值的处理方式,以及是否显示汇总行数据等。...分别探索下 Pclass、Sex、Age 和 Embarked 等与“生还率”的关系,舱位(Pclass)与生还率关系 把 pivot_table 派上场。
之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...Pandas pivot_table函数介绍:pandas有两个pivot_table函数 pandas.pivot_table pandas.DataFrame.pivot_table pandas.pivot_table...比 pandas.DataFrame.pivot_table 多了一个参数data,data就是一个dataframe,实际上这两个函数相同 pivot_table参数中最重要的四个参数 values...(数据质量问题) 由于会员等级跟消费金额挂钩,所以会员等级分布分析可以说明会员的质量 通过groupby实现,注册年月,会员等级,按这两个字段分组,对任意字段计数 分组之后得到的是multiIndex... 整体等级分布 报表可视化 从业务角度,将会员数据拆分成线上和线下,比较每月线上线下会员的运营情况 将“会员来源”字段进行拆解,统计线上线下会员增量 各地区会销比 会销比的计算和分析会销比的作用
领取专属 10元无门槛券
手把手带您无忧上云