Pandas技巧-如何读取大文件 本文中记录的是如何利用pandas来读取大文件,4个技巧: 如何利用read_csv函数读取没有表头的文件 get_chunk()方法来分块读取数据 concat()方法将数据库进行叠加...") # 如果考虑数据量过大,只抽取部分的数据来进行分析,采取不放回抽样的方式 # pd.concat(chunks, ignore_index=True).sample(frac=0.05, replace
环境准备: pip install pandas read_csv 参数详解 pandas的 read_csv 函数用于读取CSV文件。...[bytes] | ReadCsvBuffer[str] 可以接收3种类型,文件路径,读取文件的bytes, 读取文件的str 可以接受任何有效的字符串路径。...222@qq.com 2 王五 女 24 233@qq.com ······ index_col 用作行索引的列编号或列名 index_col参数在使用pandas的read_csv函数时用于指定哪一列作为...) usecols 读取指定的列 usecols 读取指定的列,可以是列名或列编号。...pandas as pd # 读取前面2行 df15 = pd.read_csv('data.csv', nrows=2) print(df15) skipfooter: 文件尾部需要忽略的行数。
TCP协议传输大文件读取时候的问题 大文件传不完的bug 我们在定义的时候定义服务端每次文件读取大小为10240, 客户端每次接受大小为10240 我们想当然的认为客户端每次读取大小就是10240而把客户端的读下来的文件想当然大小每一次都加上...10240 而实际上服务端发送文件send每次发送不一定是一次性把10240的文件传送完,可能分了好几次进行发送至缓冲区这我们实际文件大小就不一定是10240 解决办法: 1.对于每次服务端所发送的文件内容及大小都发送给客户端...,让客户端一一对应读取 2.实时读取客户端内下载后的文件,而不是想当然的每次增加10240
解决办法: **1.把当前路径中的中文改成英文。...2.修改正确的编码** 正确代码: data=pd.read_csv('C:\\Users\\lenovo\\Desktop\\handle_data_01.txt',sep='\n') print...(data) 注意要把TXT改成UTF-8形式,如果是ASCII就会报相关编码的错误 ?
最近发现pandas的一个问题,记录一下: 有一组数据(test.txt)如下: 20181016 14830680298903273 20181016 14839603473953069...t14830680298903273\n' with open('test.txt','r') as f: line = f.readline() print(line) 我平时一直在用pandas...,理论上讲14830680298903273没有小数部分不存在四舍五入的原因,网上搜了也没有很明确的解释,初步讨论后猜测应该是pandas在用float64去存这种长度过长的数字的时候有精度丢失的问题。...要解决也是很简单的: 用open的形式打开,在切割逐步去用list进行append,在合并 用read_table的函数的时候,默认是用float64去存在的,改成object去存(dtype=object...) 在生产数据的时候,对于这种过长的数据采取str的形式去存 也是给自己提个醒,要规范一下自己的数据存储操作,并养成数据核对的习惯。
Python知识点分享:pandas–read_csv()用法详解 摘要 pandas 是 Python 数据分析的必备库,而 read_csv() 函数则是其最常用的函数之一。...本篇文章详细解析了 pandas read_csv() 的各种用法,包括基本用法、参数设置和常见问题解决方案,让小白和大佬都能轻松掌握。...引言 在数据分析的过程中,我们经常需要从CSV文件中读取数据,而 pandas 库提供的 read_csv() 函数正是这一操作的利器。...(df.head()) 上述代码中,我们导入了 pandas 库,并使用 read_csv() 函数读取名为 data.csv 的文件,并输出其前五行数据。...常见问题与解决方案 乱码问题 如果读取的文件中出现乱码,可以尝试指定文件编码: # 指定文件编码 df = pd.read_csv('data.csv', encoding='utf-8') 大文件读取
在转换高德地图城市编码的过程中,有很多城市编码开头是 0,当我转成 json 的时候,出来的结果是直接吧 数字前面的 0 去掉了,不符合预期。所以此时需要对列转类型。...import os import time import requests import pandas as pd DESKTOP = os.path.join(os.path.expanduser
Python 环境下文件的读取问题,请参见拙文 Python 基础 —— 文件 这是一道著名的 Python 面试题,考察的问题是,Python 读取大文件和一般规模的文件时的区别,也即哪些接口不适合读取大文件...1. read() 接口的问题 f = open(filename, 'rb') f.read() 我们来读取 1 个 nginx 的日至文件,规模为 3Gb 大小。...解决方案:转换接口 (1)readlines() :读取全部的行,构成一个 list,实践表明还是会造成内存的问题; for line in f.reanlines(): ... (2)readline...():每次读取一行, while True: line = f.readline() if not line: break (3)read(1024):重载,指定每次读取的长度... 对可迭代对象 f,进行迭代遍历:for line in f,会自动地使用缓冲IO(buffered IO)以及内存管理,而不必担心任何大文件的问题
01 — 问题描述 使用 Pandas 的 read_excel 方法读取一个 16 万行的 Excel 文件报 AssertionError 错误: "/Users/XXX/excel_test/...Pandas 读取 Excel 文件的引擎是 xlrd,xlrd 在读取 Excel 文件时,xlrd/xlsx.py(https://github.com/python-excel/xlrd/blob...还支持 openpyxl(0.25 版),openpyxl 是一个专门用来操作 .xlsx 格式文件的 Python 库,和 xlrd 相比它的速度会慢一些,但是不会碰到上面所说的问题。...04 — 使用 Pandas + openpyxl 读取 Excel 文件 首先安装 openpyxl: pip install openpyxl Pandas 的 read_excel 方法中,有...engine 字段,可以指定所使用的处理 Excel 文件的引擎,填入 openpyxl,再读取文件就可以了。
对于很多大文件的增量读取,如果遍历每一行比对历史记录的输钱或者全都加载到内存通过历史记录的索引查找,是非常浪费资源的,网上有很多人的技术博客都是写的用for循环readline以及一个计数器去增量读取,...原理是这样子,linux的文件描述符的struct里有一个f_pos的这么个属性,里面存着文件当前读取位置,通过这个东东经过vfs的一系列映射就会得到硬盘存储的位置了,所以很直接,很快。 ...p个字节 (3)f.seek(p,2) 移动到相对文章尾之后的p个字节 tell(): 返回当前文件的读取位置。...=fd.tell() #记录读取到的位置 fd.close() #关闭文件 #再次阅读文件 fd=open("test.txt",'r') #获得一个句柄 fd.seek(label,0)# 把文件读取指针移动到之前记录的位置...fd.readline() #接着上次的位置继续向下读取 后续:今儿有一人问我如何得知这个大文件行数,以及变化,我的想法是 方法1: 可以去遍历'\n'字符。
引言Pandas 是 Python 中一个强大的数据分析库,它提供了大量的工具用于数据操作和分析。其中,read_csv 函数是 Pandas 中最常用的函数之一,用于从 CSV 文件中读取数据。...本文将详细介绍 read_csv 的基本用法,常见问题及其解决方案,并通过代码案例进行说明。正在上传图片...基本用法1....大文件读取问题描述:读取大文件时可能会导致内存不足。解决方案:使用 chunksize 参数分块读取文件。...数据类型问题问题描述:Pandas 可能会自动推断某些列的数据类型,导致数据类型不符合预期。解决方案:使用 dtype 参数指定每列的数据类型。...本文介绍了 read_csv 的基本用法,常见问题及其解决方案,并通过代码案例进行了详细说明。希望本文能帮助你在实际工作中更高效地使用 Pandas 进行数据读取和处理。
Pandas是数据科学和数据竞赛中常见的库,我们使用Pandas可以进行快速读取数据、分析数据、构造特征。...1 数据读取与存取 在Pandas中内置了众多的数据读取函数,可以读取众多的数据格式,最常见的就是read_csv函数从csv文件读取数据了。...但read_csv在读取大文件时并不快,所以建议你使用read_csv读取一次原始文件,将dataframe存储为HDF或者feather格式。...建议1:尽可能的避免读取原始csv,使用hdf、feather或h5py格式文件加快文件读取; 在某些定长的字符数据的读取情况下,read_csv读取速度比codecs.readlines慢很多倍。...同时如果你想要表格尽量占用较小的内存,可以在read_csv时就设置好每类的类型。
摘要 Pandas是Python中强大的数据分析与处理库,尤其在处理表格数据时表现出色。其中,read_csv()是Pandas最常用的函数之一,用于读取CSV文件并将其转换为DataFrame。...在本篇文章中,我们将: 了解如何安装Pandas。 介绍read_csv()的核心功能。 探索一些高级参数的用法。...read_csv()是Pandas中用于读取CSV文件的核心函数,可以将CSV文件转换为Pandas DataFrame——一种专为数据操作设计的二维表格数据结构。...3.2 分块读取大文件 如果文件很大,可以使用chunksize参数分块读取: chunks = pd.read_csv("large_file.csv", chunksize=1000) for chunk...总结 通过本文的学习,我们从Pandas安装开始,深入了解了read_csv()函数的基本和高级用法。无论是基础参数,还是处理缺失值与分块读取的技巧,都能帮助你在数据分析中快速上手。
跟着博主的脚步,每天进步一点点 ? ? Pandas是数据科学和数据竞赛中常见的库,我们使用Pandas可以进行快速读取数据、分析数据、构造特征。...1 数据读取与存取 在Pandas中内置了众多的数据读取函数,可以读取众多的数据格式,最常见的就是read_csv函数从csv文件读取数据了。...但read_csv在读取大文件时并不快,所以建议你使用read_csv读取一次原始文件,将dataframe存储为HDF或者feather格式。...建议1:尽可能的避免读取原始csv,使用hdf、feather或h5py格式文件加快文件读取; 在某些定长的字符数据的读取情况下,read_csv读取速度比codecs.readlines慢很多倍。...同时如果你想要表格尽量占用较小的内存,可以在read_csv时就设置好每类的类型。
在使用 pandas 处理表格数据的时候,有时候表格里有很多合并的单元格,不想手动去取消合并再填充数据,应该怎么办呢?...主要是使用: # 有合并的单元格,填充 NaN 数据 data = data.fillna(method='pad') 代码: #!...zhuoqun.info/ @email: yin@zhuoqun.info @time: 2019/4/22 15:22 """ import os import time import requests import pandas...data = pd.read_excel(self.file_path, encoding='gb2312', converters={'citycode': str}) # 有合并的单元格
在实际中如果出现了这些问题可能不会有任何的错误提示,但是在应用中却会给我们带来很大的麻烦。 使用pandas自带的函数读取大文件 第一个错误与实际使用Pandas完成某些任务有关。...具体来说我们在实际处理表格的数据集都非常庞大。使用pandas的read_csv读取大文件将是你最大的错误。 为什么?因为它太慢了!...似乎在使用 Pandas 时坚持这个“无循环”规则是加速计算的最佳方法。 函数式编程用递归代替循环。虽然递归也会出现各种问题(这个我们这里不考虑),但是对于科学计算来说使用矢量化是最好的选择!...甚至在文档的“大型数据集”部分会专门告诉你使用其他软件包(如 Dask)来读取大文件并远离 Pandas。其实如果我有时间从头到尾阅读用户指南,我可能会提出 50 个新手错误,所以还是看看文档吧。...总结 今天,我们学习了新手在使用Pandas时最常犯的六个错误。 我们这里提到的错误大部分和大数据集有关,只有当使用GB大小的数据集时可能才会出现。
标签:Python 如果试图使用pandas读取使用密码加密的Excel文件,并收到以下消息: 这个消息表示试图在不提供密码的情况下读取使用密码加密的文件。...在本文中,将展示如何将加密的Excel文件读入pandas。 库 最好的解决方案是使用msoffcrypto库。...使用pip进行安装: pip install msoffcrypto-tool 将加密的Excel文件直接读取到Pandas msoffcrypto库有一个load_key()方法来为Excel文件准备密码...由于希望将加密的Excel文件直接读取到pandas中,因此保存到磁盘将效率低下。因此,可以将文件内容临时写入内存缓冲区(RAM)。为此,需要使用io库。...将代码放在一起 这是一个简短的脚本,用于将加密的Excel文件直接读取到pandas中。注意,在此过程中,既没有修改原始Excel文件,也没有在磁盘上创建不必要的文件。