首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的旋转数据

是指通过一系列操作将数据从行形式转换为列形式,或者从列形式转换为行形式的过程。这种操作可以帮助我们更好地理解和分析数据。

旋转数据在数据处理和分析中非常常见,特别是在数据透视和汇总分析中。pandas提供了多种方法来实现数据的旋转,其中最常用的是pivot和pivot_table函数。

  1. pivot函数:
    • 概念:pivot函数用于将长格式的数据转换为宽格式的数据,即将某一列的值作为新的列名,将另一列的值填充到对应的位置上。
    • 优势:pivot函数简单易用,适用于简单的数据旋转操作。
    • 应用场景:适用于需要将某一列的值作为新的列名,并将另一列的值填充到对应位置的情况。
    • 示例代码:import pandas as pd
代码语言:txt
复制
 # 创建示例数据
代码语言:txt
复制
 data = {'date': ['2022-01-01', '2022-01-02', '2022-01-03'],
代码语言:txt
复制
         'city': ['Beijing', 'Shanghai', 'Guangzhou'],
代码语言:txt
复制
         'temperature': [0, 5, 10]}
代码语言:txt
复制
 df = pd.DataFrame(data)
代码语言:txt
复制
 # 使用pivot函数进行数据旋转
代码语言:txt
复制
 df_pivot = df.pivot(index='date', columns='city', values='temperature')
代码语言:txt
复制
 print(df_pivot)
代码语言:txt
复制
 ```
  1. pivot_table函数:
    • 概念:pivot_table函数用于对数据进行透视表操作,可以同时对多个列进行聚合操作,并将结果以表格形式展示。
    • 优势:pivot_table函数功能强大,支持多列聚合操作,适用于复杂的数据旋转和汇总分析。
    • 应用场景:适用于需要对多个列进行聚合操作,并将结果以表格形式展示的情况。
    • 示例代码:import pandas as pd
代码语言:txt
复制
 # 创建示例数据
代码语言:txt
复制
 data = {'date': ['2022-01-01', '2022-01-01', '2022-01-02', '2022-01-02'],
代码语言:txt
复制
         'city': ['Beijing', 'Shanghai', 'Beijing', 'Shanghai'],
代码语言:txt
复制
         'temperature': [0, 5, 2, 7],
代码语言:txt
复制
         'humidity': [30, 40, 50, 60]}
代码语言:txt
复制
 df = pd.DataFrame(data)
代码语言:txt
复制
 # 使用pivot_table函数进行数据旋转和聚合
代码语言:txt
复制
 df_pivot_table = df.pivot_table(index='date', columns='city', values=['temperature', 'humidity'], aggfunc='mean')
代码语言:txt
复制
 print(df_pivot_table)
代码语言:txt
复制
 ```

通过使用pivot和pivot_table函数,我们可以方便地对数据进行旋转操作,并根据实际需求进行聚合分析。这些功能可以帮助我们更好地理解和利用数据,从而支持云计算领域中的各种应用场景。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas数据分类

公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍是Categorical类型,主要实现数据分类问题,用于承载基于整数类别展示或编码数据,帮助使用者获得更好性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同值并且分别计算它们频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生DataFrame不同类别都是它一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

8.6K20
  • Pandas数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高函数 对于Series,它可以迭代每一列值操作: df = pd.read_csv...axis参数=0时,永远表示是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便对每个元素进行操作。...Series每个字符串 slice_replace() 用传递值替换每个字符串切片 count() 计数模式发生 startswith() 相当于每个元素str.startswith(pat...常用到函数有:map、apply、applymap。 map 是 Series 特有的方法,通过它可以对 Series 每个元素实现转换。

    13010

    pandas数据处理利器-groupby

    数据分析,常常有这样场景,需要对不同类别的数据,分别进行处理,然后再将处理之后内容合并,作为结果输出。对于这样场景,就需要借助灵活groupby功能来处理。...上述例子在python实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...groupby实际上非常灵活且强大,具体操作技巧有以下几种 1....汇总数据 transform方法返回一个和输入原始数据相同尺寸数据框,常用于在原始数据基础上增加新一列分组统计数据,用法如下 >>> df = pd.DataFrame({'x':['a','...groupby功能非常灵活强大,可以极大提高数据处理效率。

    3.6K10

    掌握pandas时序数据分组运算

    pandas分析处理时间序列数据时,经常需要对原始时间粒度下数据,按照不同时间粒度进行分组聚合运算,譬如基于每个交易日股票收盘价,计算每个月最低和最高收盘价。...而在pandas,针对不同应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。...图1 2 在pandas中进行时间分组聚合 在pandas根据具体任务场景不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用都是「下采样」,也就是从高频数据按照一定规则计算出更低频数据,就像我们一开始说对每日数据按月汇总那样。...如果你熟悉pandasgroupby()分组运算,那么你就可以很快地理解resample()使用方式,它本质上就是在对时间序列数据进行“分组”,最基础参数为rule,用于设置按照何种方式进行重采样

    3.4K10

    Pandas数据结构Pandas数据结构

    Pandas数据结构 import pandas as pd Pandas有两个最主要也是最重要数据结构: Series 和 DataFrame Series Series是一种类似于一维数组...对象,由一组数据(各种NumPy数据类型)以及一组与之对应索引(数据标签)组成。...类似一维数组对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建 [图片上传失败...(image-3ff688-1523173952026)] 1....DataFrame既有行索引也有列索引,它可以被看做是由Series组成字典(共用同一个索引),数据是以二维结构存放。...类似多维数组/表格数据 (如,excel, Rdata.frame) 每列数据可以是不同类型 索引包括列索引和行索引 [图片上传失败...

    88020

    使用 Pandas 在 Python 绘制数据

    在有关基于 Python 绘图库系列文章,我们将对使用 Pandas 这个非常流行 Python 数据操作库进行绘图进行概念性研究。...Pandas 是 Python 标准工具,用于对进行数据可扩展转换,它也已成为从 CSV 和 Excel 格式导入和导出数据流行方法。 除此之外,它还包含一个非常好绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame ,那么为什么不使用相同库进行绘制呢? 在本系列,我们将在每个库制作相同多条形柱状图,以便我们可以比较它们工作方式。...(用于 Linux、Mac 和 Windows 说明) 确认你运行是与这些库兼容 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df...在本系列文章,我们已经看到了一些令人印象深刻简单 API,但是 Pandas 一定能夺冠。

    6.9K20

    pandasdrop函数_pandas replace函数

    大家好,又见面了,我是你们朋友全栈君。 dropna()函数作用是去除读入数据(DataFrame)含有NaN行。...dropna() 效果: >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 注意: 在代码要保存对原数据修改...,需要添加 inplace 参数 ,inplace=True 表示直接在原数据上更改 df.dropna(inplace=True) 例: dfs = pd.read_excel(path, sheet_name...结果仍包含NaN dropna 参数: axis: default 0指行,1为列 how: {‘any’, ‘all’}, default ‘any’指带缺失值所有行;’all’指清除全是缺失值...thresh: int,保留含有int个非空值行 subset: 对特定列进行缺失值删除处理 inplace: 这个很常见,True表示直接在原数据上更改 参考 版权声明:本文内容由互联网用户自发贡献

    1.5K20

    Pandaspandas主要数据结构

    1. pandas入门篇 pandas数据分析领域常用库,它被专门设计来处理表格和混杂数据,这样设计让它在数据清洗和分析工作上更有优势。...1. pandas数据结构 pandas数据结构主要为: Series和DataFrame 1.1 Series Series类似一维数组,它由一组数据和一组与之相关数据标签组成。...Series表现形式为索引在左值在右。没有制定索引时,自动创建一个0到N-1(N:数据长度)整数型索引。...pandasisnull和notnull可用于检测缺失数据。...DataFrame既有行索引也有列索引,它可以被看做由Series组成字典(共用同一个索引)。DataFrame数据是以一个或多 个二维块存放(而不是列表、字典或别的一维数据结构)。

    1.4K20

    懂Excel轻松入门Python数据分析包pandas(十八):pandas vlookup

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 名声最响就是 vlookup 函数,当然在 Excel 函数公式中用于查找函数家族也挺大...,不过在 pandas 这功能却要简单多了。...今天就来看看 pandas 任何实现 Excel 多列批量 vlookup 效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市销售额数据 接着,你需要把下图表格从数据源表匹配过来...pandas 怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...> 多层索引及其应用,以及更多关于数据更新高级应用,请关注我 pandas 专栏 总结

    1.8K40

    pandasloc和iloc_pandas获取指定数据行和列

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某列,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列名称或标签来索引 iloc:通过行、列索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...(30).reshape((6,5)), columns=['A','B','C','D','E']) # 写入本地 data.to_excel("D:\\实验数据...3, 2:4]第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.9K21

    懂Excel轻松入门Python数据分析包pandas(十八):pandas vlookup

    此系列文章收录在公众号数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 名声最响就是 vlookup 函数,当然在 Excel 函数公式中用于查找函数家族也挺大...,不过在 pandas 这功能却要简单多了。...今天就来看看 pandas 任何实现 Excel 多列批量 vlookup 效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市销售额数据 接着,你需要把下图表格从数据源表匹配过来...pandas 怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas

    2.9K20

    数据科学 IPython 笔记本 7.6 Pandas 数据操作

    7.6 Pandas 数据操作 原文:Operating on Data in Pandas 译者:飞龙 协议:CC BY-NC-SA 4.0 本节是《Python 数据科学手册》(Python...这意味着,保留数据上下文并组合来自不同来源数据 - 这两个在原始 NumPy 数组可能容易出错任务 - 对于 Pandas 来说基本上是万无一失。...通用函数:索引对齐 对于两个Series或DataFrame对象二元操作,Pandas 将在执行操作过程对齐索引。这在处理不完整数据时非常方便,我们将在后面的一些示例中看到。...', 'Texas'], dtype='object') 任何没有条目的项目都标为NaN(非数字),这就是 Pandas 标记缺失数据方式(请在“处理缺失数据参阅缺失数据进一步讨论)。...,Pandas 数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组异构和/或未对齐数据时,可能出现愚蠢错误。

    2.8K10

    【硬核干货】Pandas模块数据类型转换

    我们在整理数据时候,经常会碰上数据类型出错情况,今天小编就来分享一下在Pandas模块当中数据类型转换相关技巧,干货满满哦!...导入数据集和模块 那么我们第一步惯例就是导入Pandas模块以及创建数据集了,代码如下 import pandas as pd import numpy as np df = pd.DataFrame...接下来我们开始数据类型转换,最经常用到是astype()方法,例如我们将浮点型数据转换成整型,代码如下 df['float_col'] = df['float_col'].astype('int...['mix_col'], errors='coerce') df output 而要是遇到缺失值时候,进行数据类型转换过程也一样会出现报错,代码如下 df['missing_col'].astype...最后,或许有人会问,是不是有什么办法可以一步到位实现数据类型转换呢?

    1.6K30
    领券