首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用过Excel,就会获取pandas数据框架中的值、行和列

在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。 图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

19.2K60

如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。

28030
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    numpy和pandas库实战——批量得到文件夹下多个CSV文件中的第一列数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨

    9.5K20

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    这将返回一个表,其中包含有关数据帧的汇总统计信息,例如平均值、最大值和最小值。在表的顶部是一个名为counts的行。在下面的示例中,我们可以看到数据帧中的每个特性都有不同的计数。...这提供了并非所有值都存在的初始指示。 我们可以进一步使用.info()方法。这将返回数据帧的摘要以及非空值的计数。 从上面的例子中我们可以看出,我们对数据的状态和数据丢失的程度有了更简明的总结。...我们可以使用的另一种快速方法是: df.isna().sum() 这将返回数据帧中包含了多少缺失值的摘要。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。...RMED位于同一个较大的分支中,这表明该列中存在的一些缺失值可以与这四列相关联。 摘要 在应用机器学习之前识别缺失是数据质量工作的一个关键组成部分。

    4.8K30

    Python pandas十分钟教程

    df.info():提供数据摘要,包括索引数据类型,列数据类型,非空值和内存使用情况。 df.describe():提供描述性统计数据。...df['Contour'].isnull().sum():返回'Contour'列中的空值计数 df['pH'].notnull().sum():返回“pH”列中非空值的计数 df['Depth']...数据清洗 数据清洗是数据处理一个绕不过去的坎,通常我们收集到的数据都是不完整的,缺失值、异常值等等都是需要我们处理的,Pandas中给我们提供了多个数据清洗的函数。...下面的代码将平方根应用于“Cond”列中的所有值。 df['Cond'].apply(np.sqrt) 数据分组 有时我们需要将数据分组来更好地观察数据间的差异。...Concat适用于堆叠多个数据帧的行。

    9.8K50

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...本节首先介绍pandas的工作原理,然后介绍将数据聚合到子集的两种方法:groupby方法和pivot_table函数。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...values将通过使用aggfunc聚合到结果数据框架的数据部分,aggfunc是一个可以作为字符串或NumPyufunc提供的函数。...这使得跨感兴趣的维度读取摘要信息变得容易。在我们的数据透视表中,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来将列标题转换为单个列的值,使用melt。

    4.3K30

    Python数据挖掘指南

    ,这将是您使用的公式: Reg = ols('因变量〜自变量,数据帧).fit() 打印(Reg.summary()) 当我们查看King's县的房屋价格和房屋面积时,我们打印出以下摘要报告: In [...csv并导入所有必要的值 我所做的就是从本地目录中读取csv,这恰好是我计算机的桌面,并显示了数据的前5个条目。...幸运的是,我知道这个数据集没有缺少或NaN值的列,因此我们可以跳过此示例中的数据清理部分。我们来看一下数据的基本散点图。...2、选择K = 2作为簇的数量,因为我们正在尝试创建2个明确的分组。 3、'kmeans'变量由sci-kit中的集群模块调用的输出定义。我们采用了K个簇,并将数据拟合到数组'faith'中。...现在我们已经将这些聚类看起来很好地定义了,我们可以从这两个聚类中推断出意义。他们代表什么?

    94800

    使用pandas构建简单直观的数据科学分析流程

    原文博客 本文目的: 我们将展示如何使用一个名为pdpipe的小库使用Pandas构建直观而有用的分析流程(管道)。 ? 简介 Pandas是Python中用于数据分析和机器学习的库。...在几乎所有情况下,流水线通过自动化重复的任务减少了出错的机会并节省了时间。在数据科学领域,具有管道特性的包的例子是R语言中的dplyr和Python中的Scikit learn。...我们可以在Pandas中加载数据集,并将其摘要统计信息显示如下: 最简单的管道——一个操作,我们从最简单的管道开始,由一个操作组成(不要担心,我们很快就会增加复杂性)。...对于此任务,我们使用pdpipe中的ColDrop方法创建一个管道对象drop-age,并将数据帧传递到此管道。 仅仅通过添加管道来实现管道的链式阶段只有当我们能够进行多个阶段时才是有用和实用的。...在这里,我们应用Scikit学习包中的StandardScaler将数据标准化,转换后可以用于聚类或神经网络拟合。

    99620

    Pandas 秘籍:1~5

    二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...许多秘籍将与第 1 章,“Pandas 基础”中的内容类似,这些内容主要涵盖序列操作。 选择数据帧的多个列 选择单个列是通过将所需的列名作为字符串传递给数据帧的索引运算符来完成的。...操作步骤 要获得缺失值的计数,必须首先调用isnull方法以将每个数据帧值更改为布尔值。...,然后将整个数据帧中缺失值总数的计数作为标量值返回: >>> movie.isnull().sum().sum() 2654 略有偏差是为了确定数据帧中是否缺少任何值。...这些布尔值通常存储在序列或 NumPy ndarray中,通常是通过将布尔条件应用于数据帧中的一个或多个列来创建的。

    37.6K10

    强烈推荐Pandas常用操作知识大全!

    (dropna=False) # 查看唯一值和计数 df.apply(pd.Series.value_counts) # 所有列的唯一值和计数 数据选取 使用这些命令选择数据的特定子集。...# 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) s.astype(float) # 将系列的数据类型转换为float s.replace...) df1.join(df2,on=col1,how='inner') # SQL样式将列 df1 与 df2 行所在的列col 具有相同值的列连接起来。'...返回均值的所有列 df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max()...# 返回每列中的最高值 df.min() # 返回每一列中的最小值 df.median() # 返回每列的中位数 df.std() # 返回每列的标准偏差

    15.9K20

    Python入门之数据处理——12种有用的Pandas技巧

    在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...让我们基于其各自的众数填补出“性别”、“婚姻”和“自由职业”列的缺失值。 #首先导入函数来判断众数 ? 结果返回众数和其出现频次。请注意,众数可以是一个数组,因为高频的值可能有多个。...现在,我们可以将原始数据帧和这些信息合并: ? ? 透视表验证了成功的合并操作。请注意,“value”在这里是无关紧要的,因为在这里我们只简单计数。...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...在这里,我定义了一个通用的函数,以字典的方式输入值,使用Pandas中“replace”函数来重新对值进行编码。 ? ? 编码前后计数不变,证明编码成功。。

    5K50

    介绍一种更优雅的数据预处理方法!

    在本文中,我们将重点讨论一个将「多个预处理操作」组织成「单个操作」的特定函数:pipe。 在本文中,我将通过示例方式来展示如何使用它,让我们从数据创建数据帧开始吧。...NaN 表示的缺失值,id 列包含重复的值,B 列中的 112 似乎是一个异常值。...return df 调用 Pandas 内置的 drop duplicates 函数,它可以消除给定列中的重复值。...: 需要一个数据帧和一列列表 对于列表中的每一列,它计算平均值和标准偏差 计算标准差,并使用下限平均值 删除下限和上限定义的范围之外的值 与前面的函数一样,你可以选择自己的检测异常值的方法。...但是,管道函数提供了一种结构化和有组织的方式,可以将多个功能组合到单个操作中。 根据原始数据和任务,预处理可能包括更多步骤。可以根据需要在管道函数中添加任意数量的步骤。

    2.2K30

    1w 字的 pandas 核心操作知识大全。

    ) 缺失值处理 # 检查数据中是否含有任何缺失值 df.isnull().values.any() # 查看每列数据缺失值情况 df.isnull().sum() # 提取某列含有空值的行 df[...(dropna=False) # 查看唯一值和计数 df.apply(pd.Series.value_counts) # 所有列的唯一值和计数 数据选取 使用这些命令选择数据的特定子集。...# 用均值替换所有空值(均值可以用统计模块中的几乎所有函数替换 ) s.astype(float) # 将系列的数据类型转换为float s.replace...df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max() # 返回每列中的最高值...df.min() # 返回每一列中的最小值 df.median() # 返回每列的中位数 df.std() # 返回每列的标准偏差 16个函数,用于数据清洗

    14.8K30

    Python数据处理从零开始----第二章(pandas)⑦pandas读写csv文件(1)

    这一节我们将学习如何使用Python和Pandas中的逗号分隔(CSV)文件。 我们将概述如何使用Pandas将CSV加载到dataframe以及如何将dataframe写入CSV。...在第一部分中,我们将通过示例介绍如何读取CSV文件,如何从CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据帧,以及最后如何转换数据 根据特定的数据类型(例如,使用Pandas read_csv...Pandas从文件导入CSV 在这个Pandas读取CSV教程的第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中的数据帧。...在我们的例子中,我们将使用整数0,我们将获得更好的数据帧: df = pd.read_csv(url_csv, index_col=0) df.head() ?...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同的数据文件。 在下一个示例中,我们将CSV读入Pandas数据帧并使用idNum列作为索引。

    3.7K20

    python数据分析——数据的选择和运算

    Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...数据获取 ①列索引取值 使用单个值或序列,可以从DataFrame中索引出一个或多个列。...代码和输出结果如下所示: (2)使用多个键合并两个数据帧: 关键技术:使用’ id’键及’subject_id’键合并两个数据帧,并使用merge()对其执行合并操作。...: 四、数据运算 pandas中具有大量的数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。...非空值计数 【例】对于存储在该Python文件同目录下的某电商平台销售数据product_sales.csv,形式如下所示,请利用Python对数据读取,并计算数据集每列非空值个数情况。

    19310

    手把手教你用Pandas透视表处理数据(附学习资料)

    本文重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析。...所以,本文将重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析。 如果你对这个概念不熟悉,维基百科上对它做了详细的解释。...本文示例还用到了category数据类型,而它也需要确保是最近版本。 首先,将我们销售渠道的数据读入到数据帧中。 df = pd.read_excel(".....列vs.值 我认为pivot_table中一个令人困惑的地方是“columns(列)”和“values(值)”的使用。...我一般的经验法则是,一旦你使用多个“grouby”,那么你需要评估此时使用透视表是否是一种好的选择。 高级透视表过滤 一旦你生成了需要的数据,那么数据将存在于数据帧中。

    3.2K50

    如何在 Python 中将分类特征转换为数字特征?

    然后,我们将编码器拟合到数据集的“颜色”列,并将该列转换为其编码值。 独热编码 独热编码是一种将类别转换为数字的方法。...然后,我们创建 BinaryEncoder 类的实例,并将“颜色”列指定为要编码的列。我们将编码器拟合到数据集,并将列转换为其二进制编码值。...计数编码 计数编码是一种将每个类别替换为其在数据集中出现的次数的技术。...然后,我们创建 CountEncoder 类的实例,并将“color”列指定为要编码的列。我们将编码器拟合到数据集,并将列转换为其计数编码值。...然后,我们创建 TargetEncoder 类的实例,并将“颜色”列指定为要编码的列。我们将编码器拟合到数据集,并使用目标变量作为目标将列转换为其目标编码值。

    73120

    Pandas 秘籍:6~11

    将多个变量存储为列值时进行整理 在同一单元格中存储两个或多个值时进行整理 在列名和值中存储变量时进行整理 将多个观测单位存储在同一表中时进行整理 介绍 前几章中使用的所有数据集都没有做太多或做任何工作来更改其结构...如前面的秘籍“将多个变量存储为列值时进行整理”秘籍所述,当在index参数中使用多个列时,我们必须使用pivot_table来旋转数据帧。 旋转后,Group和Year变量卡在索引中。...,关联表以及主键和外键 有关wide_to_long函数的更多信息,请参阅本章中的“同时堆叠多组变量”秘籍 九、组合 Pandas 对象 在本章中,我们将介绍以下主题: 将新行追加到数据帧 将多个数据帧连接在一起...在内部,pandas 将序列列表转换为单个数据帧,然后进行追加。 将多个数据帧连接在一起 通用的concat函数可将两个或多个数据帧(或序列)垂直和水平连接在一起。...join: 数据帧方法 水平组合两个或多个 Pandas 对象 将调用的数据帧的列或索引与其他对象的索引(而不是列)对齐 通过执行笛卡尔积来处理连接列/索引上的重复值 默认为左连接,带有内,外和右选项

    34K10
    领券