首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas获取作为groupby中的列表的列的平均长度

pandas是一个Python的数据分析库,提供了丰富的数据处理和分析功能。在pandas中,我们可以使用groupby方法对数据进行分组操作,并通过agg方法对分组后的数据进行聚合计算。

要获取作为groupby中的列表的列的平均长度,可以按照以下步骤进行操作:

  1. 导入pandas库:
代码语言:txt
复制
import pandas as pd
  1. 创建一个DataFrame对象,包含需要操作的数据:
代码语言:txt
复制
data = {'group': ['A', 'B', 'A', 'B', 'A'],
        'value': ['apple', 'banana', 'cherry', 'date', 'elderberry']}
df = pd.DataFrame(data)

这里创建了一个包含两列(group和value)的DataFrame对象。

  1. 使用groupby方法按照group列进行分组,并使用agg方法进行聚合计算:
代码语言:txt
复制
result = df.groupby('group')['value'].agg(lambda x: sum(len(i) for i in x) / len(x))

在上述代码中,通过lambda函数计算了列表中每个元素的长度,并对长度进行求和,最后再除以列表的长度得到平均长度。

  1. 查看结果:
代码语言:txt
复制
print(result)

以上代码将会输出按照group列分组后的value列的平均长度。

对于腾讯云的相关产品,由于不可以提及云计算品牌商,这里无法提供具体的产品和链接地址。但是腾讯云也提供了云计算相关的产品和服务,你可以去腾讯云官网查询相关产品和文档,以获得更多详细信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandasloc和iloc_pandas获取指定数据行和

大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二值 # 读取第二全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应值 data3...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

8.9K21
  • 用过Excel,就会获取pandas数据框架值、行和

    在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...图5 获取 方括号表示法使获得多变得容易。语法类似,但我们将字符串列表传递到方括号。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas,这类似于如何索引/切片Python列表。...图11 试着获取第3行Harry Poter国家名字。 图12 要获得第2行和第4行,以及其中用户姓名、性别和年龄,可以将行和列作为两个列表传递到参数“row”和“column”位置。

    19.1K60

    Pandas vs Spark:获取指定N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到获取指定多种实现做以对比。...无论是pandasDataFrame还是spark.sqlDataFrame,获取指定一是一种很常见需求场景,获取指定之后可以用于提取原数据子集,也可以根据该衍生其他。...在两个计算框架下,都支持了多种实现获取指定方式,但具体实现还是有一定区别的。 01 pd.DataFrame获取指定 在pd.DataFrame数据结构,提供了多种获取单列方式。...02 spark.sqlDataFrame获取指定 spark.sql也提供了名为DataFrame核心数据抽象,其与PandasDataFrame有很多相近之处,但也有许多不同,典型区别包括...这里expr执行了类SQL功能,可以接受一个该表达式执行类SQL计算,例如此处仅用于提取A,则直接赋予列名作为参数即可; df.selectExpr("A"):对于上述select+expr组合

    11.5K20

    Pandas基础使用系列---获取行和

    前言我们上篇文章简单介绍了如何获取行和数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定数据我们依然使用之前数据。...我们先看看如何通过切片方法获取指定所有行数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行位置我们使用类似python切片语法。...大家还记得它们区别吗?可以看看上一篇文章内容。同样我们可以利用切片方法获取类似前4这样数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一也计算在内了。...年", "2018年"]]可以看到,我们行名用了一个列表,列名也用了一个列表。...通常是建议这样获取,因为从代码可读性上更容易知道我们获取是哪一行哪一。当然我们也可以通过索引和切片方式获取,只是可读性上没有这么好。

    60800

    pythonfillna_python – 使用groupbyPandas fillna

    大家好,又见面了,我是你们朋友全栈君。 我试图使用具有相似行来估算值....’]和[‘two’]键,这是相似的,如果[‘three’]不完全是nan,那么从值为一行类似键现有值’3′] 这是我愿望结果 one | two | three 1 1 10 1 1 10...我尝试过使用groupby fillna() df[‘three’] = df.groupby([‘one’,’two’])[‘three’].fillna() 这给了我一个错误....我尝试了向前填充,这给了我相当奇怪结果,它向前填充第2.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...three 0 1 1 10.0 1 1 1 40.0 2 1 1 25.0 3 1 2 20.0 4 1 2 20.0 5 1 2 20.0 6 1 3 NaN 7 1 3 NaN 标签:python,pandas

    1.8K30

    Pandasgroupby这些用法你都知道吗?

    导读 pandas作为Python数据分析瑞士军刀,集成了大量实用功能接口,基本可以实现数据分析一站式处理。...01 如何理解pandasgroupby操作 groupbypandas中用于数据分析一个重要功能,其功能与SQL分组操作类似,但功能却更为强大。...0,表示沿着行切分 as_index,是否将分组列名作为输出索引,默认为True;当设置为False时相当于加了reset_index功能 sort,与SQLgroupby操作会默认执行排序一致,该...),执行更为丰富聚合功能,常用列表、字典等形式作为参数 例如需要对如上数据表两门课程分别统计平均分和最低分,则可用列表形式传参如下: ?...例如,想对比个人成绩与班级平均分,则如下操作会是首选: ? 当然,这一操作也可以通过mean聚合+merge连接实现: ? 实际上,pandas几乎所有需求都存在不止一种实现方式!

    4.2K40

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    Excel公式技巧73:获取长度最大数据值

    在《Excel公式技巧72:获取单元格内容最大长度,我们使用一个简单数组公式: =MAX(LEN(B3:B12)) 获取单元格内容最长文本长度值。...那么,这个最长文本是什么呢?我们如何使用公式获取长度最长文本数据值?有了前面的基础后,这不难实现。...图1 我们已经知道,公式: MAX(LEN(B3:B12)) 得到单元格区域中最长单元格长度值:12 公式: LEN(B3:B12) 生成由单元格区域中各单元格长度值组成数组: {7;6;4...;5;12;6;3;6;1;3} 将上述结果作为MATCH函数参数,找到最大长度值所在位置: MATCH(MAX(LEN(B3:B12)),LEN(B3:B12),0) 转换为: MATCH(12,...{7;6;4;5;12;6;3;6;1;3},0) 得到: 5 代入INDEX函数,得到: =INDEX(B3:B12,5) 得到内容最长单元格B7值: excelperfect 如果将单元格区域命名为

    6K10

    一日一技:pandas获取groupby分组里最大值所在

    如下面这个DataFrame,按照Mt分组,取出Count最大那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e...1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) CountMtSpValue03s1a112s1b225s2c3310s2d4410s2e556s3f6 方法1:在分组过滤出...方法2:用transform获取原dataframeindex,然后过滤出需要行 print df.groupby(['Mt'])['Count'].agg(max) idx=df.groupby...方法3:idmax(旧版本pandas是argmax) idx = df.groupby('Mt')['Count'].idxmax() print idx df.iloc[idx]...思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index方法。不管怎样,groupby之后,每个分组都是一个dataframe。

    4.2K30

    pandas这几个函数,我看懂了道家“一生二、二生三、三生万物”

    正因为各返回值是一个ndarray,而对于一个dataframe对象各唯一值ndarray长度可能不一致,此时无法重组成一个二维ndarray,从这个角度可以理解unique不适用于dataframe...04 groupby groupby,顾名思义,是用于实现分组聚合统计函数,与SQLgroup by逻辑类似。例如想统计前面成绩表各门课平均分,语句如下: ?...当然,groupby强大之处在于,分组依据字段可以不只一。例如想统计各班每门课程平均分,语句如下: ? 不只是分组依据可以用多,聚合函数也可以是多个。...另外,groupby分组字段和聚合函数都还存在很多其他用法:分组依据可以是一个传入序列(例如某个字段一种变形),聚合函数agg内部写法还有列表和元组等多种不同实现。...例如,这里想以学生姓氏进行分组统计课程平均分,语句如下: ? 05 pivot_table pivot_table是pandas中用于实现数据透视表功能函数,与Excel相关用法如出一辙。

    2.5K10

    Python数据分析实战(2)使用Pandas进行数据分析

    一、Pandas使用 1.Pandas介绍 Pandas主要应用包括: 数据读取 数据集成 透视表 数据聚合与分组运算 分段统计 数据可视化 对电影数据分析: 平均分较高电影 不同性别对电影平均评分...一般在jupyter一个cell只默认输出最后一行变量,要想前面行数据,需要调用print()方法; 其中,.iloc只按整数位置进行选择,其工作方式与Python列表类似,.loc只通过索引标签进行选择...dtype: object 4.3 求所有平均值和指定平均值: print(iris_data.mean()) print(iris_data["花萼长度"].mean()) 打印: 花萼长度...(4)获取平均分较高电影 先求出每部电影平均评分如下: #以title 作为index 对数据进行划分 movie_rate_pingjun = pd.pivot_table(movie_data...pivot_table()透视表方法、并传递平均作为聚合函数求出每部电影平均评分

    4.1K30
    领券