Zhang通讯发表在 Nature Communications 的研究成果:作者提出了SCALEX,一种深度学习方法,通过将细胞投射到一个批次不变的、共同的细胞嵌入空间,以真正的在线方式(即不需要重新训练模型...首先,SCALEX实现了一个没有批处理的编码器,它只从输入的单细胞数据(x)中提取与生物相关的潜在特征(z),以及一个特定批处理的解码器,它通过在数据重构期间将批处理信息纳入其中,从z中重构原始数据。...作者根据基准数据集,通过统一模态逼近和投影(UMAP)嵌入可视化以及一系列评分指标,评估了这些工具的整合性能。...SCALEX通过在线投影添加新的数据,增加了现有细胞空间的范围和分辨率 SCALEX的编码器具有通用性,可以将不同来源的细胞投射到一个共同的细胞嵌入空间,而不需要重新训练模型,这使得SCALEX能够以在线方式将新的单细胞数据与现有的数据进行整合...图3 将异质数据投射到一个共同的细胞嵌入空间中。 图4 构建一个可扩展的小鼠单细胞图谱。 图5 在线整合COVID-19 PBMC图谱。
前言 Pandas库是Python中最流行的数据操作库。受到R语言的frames启发,它提供了一种通过其data-frame API操作数据的简单方法。...下面我们给大家介绍Pandas在Python中的定位。 ? 01 了解Pandas 要很好地理解pandas,关键之一是要理解pandas是一系列其他python库的包装器。...另一个因素是向量化操作的能力,它可以对整个数据集进行操作,而不只是对一个子数据集进行操作。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据帧读取函数将数据帧加载到内存中时,pandas会进行类型推断,这可能是低效的。...04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。因此,可以将数据帧作为迭代器处理,并且能够处理大于可用内存的数据帧。 ?
行切片 附加行 append 删除行 drop 数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴...描述 1 data 数据采取各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。...2 index 对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。 3 columns 对于列标签,可选的默认语法是 - np.arange(n)。...这只有在没有索引传递的情况下才是这样。 4 dtype 每列的数据类型。 5 copy 如果默认值为False,则此命令(或任何它)用于复制数据。...创建DataFrame Pandas数据帧(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据帧(DataFrame) 列表 import
从面板中选择数据 系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。...,list,constants 2 index 索引值必须是唯一的和散列的,与数据的长度相同 默认np.arange(n)如果没有索引被传递 3 dtype dtype用于数据类型 如果没有,将推断数据类型...创建DataFrame Pandas数据帧(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据帧(DataFrame) 列表 import...) major_axis axis 1,它是每个数据帧(DataFrame)的索引(行) minor_axis axis 2,它是每个数据帧(DataFrame)的列 pandas.Panel(data...,dict,constant和另一个数据帧(DataFrame) items axis=0 major_axis axis=1 minor_axis axis=2 dtype 每列的数据类型 copy
而距离3首映仅一年,《复联4》就带着超过3000个特效镜头赶来。这背后是12家特效公司、上千人团队以及计算机的工作。 今天我们不聊剧情,聊聊特效与它的新武器人工智能的那些事。...如果没有特效,你看到的复联,画风完全是另一个模样 但特效的制作一般需要花费巨大的心血和财力,所以特效做的不好的话会被戏称「五毛特效」。...工业光魔制作的绿巨人特效 利用这种技术,工业光魔团队可以将一位演员的样子映射到表演者脸上,并且制作效率大大提高。...数字王国使用 Masquerade 定制机器学习软件,通过两个垂直方向的高清摄像头捕获面部数据,细致追踪面部的 100 到 150 个跟踪点。...之后,通过计算机视觉的技术,训练和调试机器学习模型,自动将得到的脸部渲染映射到灭霸这个角色上,最终得到自然的面部视觉效果。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。
Pandas (资料数量:15089; 贡献者:762) Pandas是一个Python软件包,可以处理“标记”(labeled)和“关联”(relational)数据,简单直观。...Pandas是数据整理的完美工具。 使用者可以通过它快速简便地完成数据操作,聚合和可视化。 ?...Pandas库有两种主要数据结构: “系列”(Series)——单维结构 “数据帧”(Data Frames)——二维结构 例如,如果你通过Series在Data Frame中附加一行数据,你就能从这两种数据结构中获得一个的新的...“数据帧” 使用Pandas你可以完成以下操作: 轻松删除或添加“数据帧” bjects将数据结构转化成“数据帧对象” 处理缺失数据,用NaNs表示 强大的分组功能 4.Matplotlib (资料数量...:21754; 贡献者:588) MatPlotlib是SciPy Stack另一个核心软件包和Python库,可以轻松生成简单而强大的可视化功能。
通过这种方式,你可以将 Pandas Series`视为 Python 字典的特化。...字典是将任意键映射到一组任意值的结构,而Series是将类型化键映射到一组类型化值的结构。...Pandas 数据帧对象 Pandas 的下一个基本结构是DataFrame。...作为特化字典的DataFrame 同样,我们也可以将DataFrame视为字典的特化。 字典将键映射到值,DataFrame将列名称映射到列数据的Series。...我们将在“数据索引和选择”中,探索更灵活的索引DataFrame的方法。 构造DataFrame对象 Pandas DataFrame可以通过多种方式构建。这里我们举几个例子。
如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...唯一需要做的是创建一个接受所需的数量的NumPy数组(Pandas系列)作为输入的函数。...create_range的函数,它接受两个NumPy数组,并通过简单的for循环返回一个NumPy数组。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...df.head()将显示数据帧的前5行,使用此函数可以快速浏览数据集。 删除未使用的列 根据我们的样本,有一个无效/空的Unnamed:13列我们不需要。我们可以使用下面的函数删除它。...inplace=True将直接对数据帧本身执行操作,默认情况下,它将创建另一个副本,你必须再次将其分配给数据帧,如df = df.drop(columns="Unnamed: 13")。...这可能是由于来自数据源的错误输入造成的,我们必须假设这些值是正确的,并映射到男性或女性。...如果我们在读取数据时发现了这个问题,我们实际上可以通过将缺失值传递给na_values参数来处理这个缺失值。结果是一样的。 现在我们已经用空值替换了它们,我们将如何处理那些缺失值呢?
一个是列表索引,它返回一个数据帧。 另一个是数据帧中的一列。 接下来,我们注意到第零列中的第一项是abbreviation,我们不想要它。...我们将在下一个教程中讨论这个问题。 五、连接(concat)和附加数据帧 欢迎阅读 Python 和 Pandas 数据分析系列教程第五部分。在本教程中,我们将介绍如何以各种方式组合数据帧。...六、连接(join)和合并数据帧 欢迎阅读 Python 和 Pandas 数据分析系列教程的第六部分。 在这一部分种,我们将讨论连接(join)和合并数据帧,作为组合数据框的另一种方法。...九、重采样 欢迎阅读另一个 Python 和 Pandas 数据分析教程。在本教程中,我们将讨论通过消除噪音来平滑数据。有两种主要的方法来实现。...这对于平滑我们的数据,以及在它上面收集一些基本的统计量是有用的。 十一、滚动统计量 欢迎阅读另一个 Python 和 Pandas 数据分析系列教程,这里面我们成为了房地产大亨。
pandas处理以下数据结构: 系列(Series) 数据帧(DataFrame) 面板(Panel) 说实话,第三种我也没接触过。...数据帧 2 一般的二维标签,大小可变的表格结构,具有潜在的非均匀类型列。 面板 3 一般3D标签,大小可变的数组。 ---- Series 系列是具有均匀数据的一维数组结构。...dtype:dtype用于数据类型。如果没有,将推断数据类型 copy:复制数据,默认为false。...,序列,地图,列表,字典,常量和另一个DataFrame。...这只有在没有通过索引的情况下才是正确的。 dtype:每列的数据类型。 copy:如果默认值为False,则使用该命令(或其它)复制数据。
这是一个简单的解决方案,与图像内容无关。 ? ? 另一个想法是将“功能”或“视觉图元”视为一个标量值属性,可以对多个补丁进行汇总,并在不同补丁之间进行比较。...生成对抗网络(GAN)能够学习从简单的潜在变量映射到任意复杂的数据分布。...追踪 物体的运动情况可以通过一系列视频帧进行跟踪。在临近帧中捕获同一物体的特征方式之间的差异并不大,这些差异通常是由物体或摄像机的微小运动触发的。...选择第一个补丁x和最后一个补丁x+并将其用作训练数据点。 如果直接训练模型,在对两个特征向量之间的差异实现最小化,那么该模型可能只会学会将所有内容映射到相同的值。 ? 其损失函数为: ?...与基于图像的着色不同,此处的任务是通过利用视频帧之间颜色的自然时间一致性,将颜色从正常的参考帧复制到另一个灰度目标帧(因此,这两个帧不应相距太远)。
这是一个简单的解决方案,与图像内容无关。 另一个想法是将“功能”或“视觉图元”视为一个标量值属性,可以对多个补丁进行汇总,并在不同补丁之间进行比较。...生成对抗网络(GAN)能够学习从简单的潜在变量映射到任意复杂的数据分布。...追踪 物体的运动情况可以通过一系列视频帧进行跟踪。在临近帧中捕获同一物体的特征方式之间的差异并不大,这些差异通常是由物体或摄像机的微小运动触发的。...选择第一个补丁x和最后一个补丁x+并将其用作训练数据点。 如果直接训练模型,在对两个特征向量之间的差异实现最小化,那么该模型可能只会学会将所有内容映射到相同的值。...与基于图像的着色不同,此处的任务是通过利用视频帧之间颜色的自然时间一致性,将颜色从正常的参考帧复制到另一个灰度目标帧(因此,这两个帧不应相距太远)。
df.replace('', np.NaN) missingno 库 Missingno 是一个优秀且简单易用的 Python 库,它提供了一系列可视化,以了解数据帧中缺失数据的存在和分布。...将pandas导入为 pd import pandas as pd import missingno as msno df = pd.read_csv('xeek_train_subset.csv')...这将返回一个表,其中包含有关数据帧的汇总统计信息,例如平均值、最大值和最小值。在表的顶部是一个名为counts的行。在下面的示例中,我们可以看到数据帧中的每个特性都有不同的计数。...右上角表示数据帧中的最大行数。 在绘图的顶部,有一系列数字表示该列中非空值的总数。 在这个例子中,我们可以看到许多列(DTS、DCAL和RSHA)有大量的缺失值。...这可以通过使用missingno库和一系列可视化来实现,以了解有多少缺失数据存在、发生在哪里,以及不同数据列之间缺失值的发生是如何关联的。
它们在收集和清理来自限定文本文件、电子表格和数据库查询的数据方面提供了灵活性。最常用的数据框架是Pandas,这是一个python包,对于有限的数据来说,它的表现足够好。...df.description().to_pandas() ◆ 访问表元素 Polars可以通过与pandas.DataFrame.iloc函数类似的行索引直接访问表的行,如下所示。...plt.show() ◆ Eager和Lazy的API Polars的Eager和Lazy APIs Polars(引申为Pandas)默认采用了Eager的运行,这意味着函数会实时映射到每个数据。...它的实现与Pandas类似,支持映射和应用函数到数据框架中的系列。绘图很容易生成,并与一些最常见的可视化工具集成。此外,它允许在没有弹性分布式数据集(RDDs)的情况下进行Lazy评估。...总的来说,Polars可以为数据科学家和爱好者提供更好的工具,将数据导入到数据框架中。有很多Pandas可以做的功能目前在Polars上是不存在的。在这种情况下,强烈建议将数据框架投向Pandas。
比如OPPO Find X5系列的发布会上,自研的影像专用NPU芯片占了很大的篇幅,成为计算摄影的另一个忠实拥趸;继全球发布后今日在国内亮相的荣耀Magic4系列直接定位于全能智慧旗舰,影像、性能、隐私等方面都有...正如Mobile在报道荣耀Magic4时引述的一组数据:“荣耀Magic4系列将CPU性能提高了20%,GPU性能提高了30%,人工智能功能提高了300%。”...回头来看,荣耀Magic提出的理念不可谓不前沿,试图通过大数据、人工智能等技术重构人机关系,智能手机不单单是通信、娱乐和生产力工具,还将是普通用户的“贾维斯”,用户想要看电影的时候主动推荐热映大片,用户需要出行的时候主动打车...另一个是AI场景的落地。...另一个佐证是在影像能力上尝到甜头的荣耀,不仅在荣耀Magic4系列上升级了多主摄融合计算摄影技术,摘得DXOMARK影像评分的最高分,还进一步将“智慧”能力向其他场景加速渗透。
,有位粉丝提到了一个牛逼的库,它巧妙的将Pandas与GUI界面结合起来,使得我们可以借助GUI界面来分析DATaFrame数据框。 基于此,我觉得有必要写一篇文章,再为大家做一个学习分享。...image.png pandasgui安装与简单使用 根据作者的介绍,pandasgui是用于分析 Pandas DataFrames的GUI。这个属于第三方库,使用之前需要安装。...image.png pandasgui的6大特征 pandasgui一共有如下6大特征: Ⅰ 查看数据帧和系列(支持多索引); Ⅱ 统计汇总; Ⅲ 过滤; Ⅳ 交互式绘图; Ⅴ 重塑功能; Ⅵ 支持csv...查看数据帧和系列 运行下方代码,我们可以清晰看到数据集的shape,行列索引名。...支持csv文件的导入、导出 支持数据导入、导出,让我们更加便捷的操作数据集。同时这里还有一些其他的菜单,等着大家仔细研究。 image.png 关于pandasgui的介绍,就到这里,你学会了吗?
领取专属 10元无门槛券
手把手带您无忧上云