首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel按某一列数据从另一列找到对应字段的数值

本文介绍在Excel中,从某一列数据中找到与已知数据对应的字段,并提取这个字段对应数值的方法。   首先,来明确一下我们的需求。...现在已知一个Excel数据,假设其中W列包含了上海市全部社区的名称,而其后的Y列则是这些社区对应的面积;随后,Z列是另一批社区的名称,其中既有上海市的社区(也就是在W列中的数据),也可能会有其他城市的社区...我们希望,基于前面的W列与Y列,分别提取Z列社区对应的面积,存放在AA列里。如下图所示。   明确了需求,我们就可以通过Excel的公式来实现这一需求。...需求的实现也是很简单的,我们只需要在AA列中第一个数据行中,输入如下的公式即可。 =VLOOKUP(Z2,$W$2:$Y$53,3,FALSE)   其中,VLOOKUP是Excel中的查询函数。...此外,在列号字母和行号数字前,一定要加   随后,3表示在用来【寻找社区面积】的那一堆数据里,社区面积排在第几列。

17410

2.37 PowerBI数据建模-按列排序的副作用,ALL失效了

使用ALL函数来计算占比,明明公式正确,返回的百分比却都是100%,百思不得其解,这是软件的Bug吗? 举例基于下表,计算每个班级的人数占比。...班级人数'[人数])总人数_Wrong = CALCULATE([人数],ALL('班级人数'[班级]))班级人数占比_Wrong = DIVIDE([人数],[总人数])异常结果如下:解决方案班级这一列使用了按列排序...,把班级字段拖入报表中的时候,实际上还拖入了一个看不到的班级排序字段,这样才能实现排序的效果。...这种情况下,ALL函数只用了一个字段,并没有彻底清除筛选,所以分母的总人数返回的还是每个班级的人数。把字段和排序字段都放到ALL的参数中,就会返回正确的结果。...本例把ALL的参数调整为班级和用于排序的班级排序字段,如下:总人数 = CALCULATE([人数],ALL('班级人数'[班级],'班级人数'[班级排序]))拓展按列排序还会有其他的副作用,比如判断某个被排序的字段是否被筛选

3500
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。

    28030

    问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

    excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

    5.6K30

    PQ-M及函数:如何按某列数据筛选出一个表里最大的行?

    关于筛选出最大行的问题,通常有两种情况,即: 1、最大行(按年龄)没有重复,比如这样: 2、最大行(按年龄)有重复,比如这样: 对于第1种情况,要筛选出来比较简单...,直接用Table.Max函数即可(得到的是一个记录,也体现了其结果的唯一性),如下图所示: 对于第2种情况,可以考虑用Table.SelectRows函数来进行筛选,即筛选出年龄等于源表...(数据导入Power Query后做了类型更改,产生了”更改的类型“步骤)中最大值(通过List.Max函数取得,主要其引用的是源表中的年龄列)的内容: 当然,第2种情况其实是适用于第1...种情况的。...这也是为什么说——Table.SelectRows这个函数非常常用,其可使用的场景非常的多。

    2.7K20

    python dtype o_python – 什么是dtype(’O’)? – 堆栈内存溢出「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 当你在数据帧中看到dtype(‘O’) ,这意味着Pandas字符串。 什么是dtype ? 什么属于pandas或numpy ,或两者,或其他什么?...数据类型对象是numpy.dtype类的一个实例, numpy.dtype 更加精确地理解数据类型,包括: 数据类型(整数,浮点数,Python对象等) 数据的大小(例如整数中的字节数) 数据的字节顺序...下面是一些用于测试和解释的代码:如果我们将数据集作为字典 import pandas as pd import numpy as np from pandas import Timestamp data...(data) #now we have a dataframe print(df) print(df.dtypes) 最后一行将检查数据帧并记下输出: id date role num fnum 0 1...,除非我们设置的所有列行np.nan或None 。

    2.6K20

    【数据结构】数组和字符串(八):稀疏矩阵的链接存储:十字链表的创建、插入元素、遍历打印(按行、按列、打印矩阵)、销毁

    4.2.1 矩阵的数组表示 【数据结构】数组和字符串(一):矩阵的数组表示 4.2.2 特殊矩阵的压缩存储   矩阵是以按行优先次序将所有矩阵元素存放在一个一维数组中。...传统的按行优先次序存储方法会浪费大量空间来存储零元素,因此采用压缩存储的方法更为合适。常见的压缩存储方法有:压缩稠密行(CSR)、压缩稠密列(CSC)、坐标列表(COO)等。 a....稀疏矩阵的压缩存储——三元组表 【数据结构】数组和字符串(四):特殊矩阵的压缩存储:稀疏矩阵——三元组表 4.2.3三元组表的转置、加法、乘法、操作 【数据结构】数组和字符串(七):特殊矩阵的压缩存储:...三元组表的转置、加法、乘法操作 4.2.4十字链表   十字链表(Cross-linked List)是一种用于表示稀疏矩阵的数据结构。...关于循环链表: 【数据结构】线性表(三)循环链表的各种操作(创建、插入、查找、删除、修改、遍历打印、释放内存空间) 在稀疏矩阵的十字链表中,每一行和每一列都有一个表头节点。

    24310

    Pandas数据结构之DataFrame

    用结构多维数组或记录多维数组生成 DataFrame 用列表字典生成 DataFrame 用元组字典生成 DataFrame 用 Series 创建 DataFrame 备选构建器 DataFrame 是由多种类型的列构成的二维标签数据结构...传递了索引或列,就可以确保生成的 DataFrame 里包含索引或列。Series 字典加上指定索引时,会丢弃与传递的索引不匹配的所有数据。 没有传递轴标签时,按常规依据输入数据进行构建。...Python > = 3.6,且 Pandas > = 0.23,数据是字典,且未指定 columns 参数时,DataFrame 的列按字典的插入顺序排序。...Python 的列按字典键的字母排序。...、列标签: 指定列与数据字典一起传递时,传递的列会覆盖字典的键。

    1.6K10

    创建DataFrame:10种方式任你选!

    .jpg] 手动创建DataFrame 将每个列字段的数据通过列表的形式列出来 df1 = pd.DataFrame({ "name":["小明","小红","小侯","小周","小孙"],...DataFrame 是将数个 Series 按列合并而成的二维数据结构,每一列单独取出来是一个 Series ,所以我们可以直接通过Series数据进行创建。...(DataFrame)是pandas中的二维数据结构,即数据以行和列的表格方式排列,类似于 Excel 、SQL 表,或 Series 对象构成的字典。...它在pandas中是经常使用,本身就是多个Series类型数据的合并。 本文介绍了10种不同的方式创建DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。...希望本文能够对读者朋友掌握数据帧DataFrame的创建有所帮助。 下一篇文章的预告:如何在DataFrame中查找满足我们需求的数据

    4.7K30

    一道基础题,多种解题思路,引出Pandas多个知识点

    小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 源于林胖发出的一道基础题: ? ?...itertools.product): product(*iterables, repeat=1) --> product object 参数: iterables 为可迭代对象 可选参数repeat 表示重复次数 用于生成可迭代对象输入的笛卡儿积...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。...不过这样会丢失原本的"a"列,我们可以先将"a"列设置为索引,再进行Series分列操作: df.set_index("a")["b"].apply(pd.Series) 或者把结果设置成原本的"a"...对于这个例子,其实我们可以直接通过pd.DataFrame.from_dict方法orient参数传入’index’,直接获得第二步的结果(只是索引没有名称): df = pd.DataFrame.from_dict

    1.2K20

    C语言经典100例002-将M行N列的二维数组中的字符数据,按列的顺序依次放到一个字符串中

    喜欢的同学记得点赞、转发、收藏哦~ 后续C语言经典100例将会以pdf和代码的形式发放到公众号 欢迎关注:计算广告生态 即时查收 1 题目 编写函数fun() 函数功能:将M行N列的二维数组中的字符数据...,按列的顺序依次放到一个字符串中 例如: 二维数组中的数据为: W W W W S S S S H H H H 则字符串中的内容是:WSHWSHWSH [image.png] 2 思路 第一层循环按照列数进行...M 3 #define N 4 /** 编写函数fun() 函数功能:将M行N列的二维数组中的字符数据,按列的顺序依次放到一个字符串中 例如: 二维数组中的数据为: W W W W S S S..."%c\t", a[i][j]); // printf("%c\t", *(*(a*i)+j)); // 指针表示 } printf("\n"); } printf("按列的顺序依次.../demo 二维数组中元素: M M M M S S S S H H H H 按列的顺序依次: MSHMSHMSHMSH -- END -- 喜欢本文的同学记得点赞、转发、收藏~ 更多内容,欢迎大家关注我们的公众号

    6.1K30

    使用Python和IBM Watson可视化的个性简介

    数据 对于这个项目,利用了加州大学圣克鲁兹分校的大量电影语料库。语料库按类型细分,包含960个电影剧本,其中电影中的对话框已与场景描述分开。...https://nlds.soe.ucsc.edu/fc2 为了使数据准备好进行分析,需要进行大量的清洁和预处理。此外,数据存在一些结构性挑战。也就是说,需要分解并将每个引用/行与相应的字符相关联。...出于本文的目的,不会深入讨论整个预处理代码(对于那些感兴趣的人,可以在这里找到完整的笔记本)。但是将说明如何将角色/说话者与对话分开,然后将它们拼接成数据帧。...将看到输入文本中的单词计数,每个五大特征的每个百分位数,需求,以及每个主要五个特征的详细子特征(称为子项)。 但是,作为数据科学家,不想提出无聊的读数。相反想通过一些有吸引力的条形图来描绘这些特征。...(遗憾的是,在这次IBM服务的迭代中没有需要列'eagles') 除了这个广泛的视角,还可以放大Gandalf的个性特征的儿童特征。看看发现了什么: ? 透明度 ? 责任心 ? 外向性 ?

    1.3K20

    使用Plotly创建带有回归趋势线的时间序列可视化图表

    数据 为了说明这是如何工作的,让我们假设我们有一个简单的数据集,它有一个datetime列和几个其他分类列。您感兴趣的是某一列(“类型”)在一段时间内(“日期”)的汇总计数。...列可以是数字、类别或布尔值,但是这没关系。 注意:初始部分包含用于上下文和显示常见错误的代码,对于现成的解决方案,请参阅最后的GitHub的代码。...代替由点按时间顺序连接的点,我们有了某种奇怪的“ z”符号。 运行中的go.Scatter()图,但未达到预期。点的连接顺序错误。下面图形是按日期对值进行排序后的相同数据。...例如,使用groupby方法时,我们丢失了类别(a、b)的type列,仅凭三个数据点很难判断是否存在任何类型的趋势。...因为我们在for循环中传递了分组的dataframe,所以我们可以迭代地访问组名和数据帧的元素。在这段代码的最终版本中,请注意散点对象中的line和name参数,以指定虚线。

    5.1K30

    安利几个pandas处理字典和JSON数据的方法

    字典数据转化为Dataframe类型 2.Dataframe转化为字典数据 3.json数据与Dataframe类型互相转化 4.多层结构字典转化为Dataframe 1....字典数据转化为Dataframe类型 1.1.简单的字典 对于字典数据,直接用pd.Dataframe方法即可转化为Dataframe类型。...我们可以看到,在常规的字典转化为Dataframe时,键转化为了列索引,行索引默认为range(n),其中n为数据长度。我们亦可在进行转化的时候,通过设定参数index的值指定行索引。...(data,orient='index').T #使用 pd.DataFrame.from_dict,再转置 Out[9]: a b 0 1 2 1.2.字典组成的列表 对于由字典组成的列表...,使用pd.Dataframe方法进行转化时,一级key是列索引,二级key是行索引。

    3.4K20

    盘一盘 Python 系列 - Cufflinks (下)

    width:字典、列表或整数格式,用于设置轨迹宽度 字典:{column:value} 按数据帧中的列标签设置宽度 列表:[value] 对每条轨迹按顺序的设置宽度 整数:具体数值,适用于所有轨迹 --...-- dash:字典、列表或字符串格式,用于设置轨迹风格 字典:{column:value} 按数据帧中的列标签设置风格 列表:[value] 对每条轨迹按顺序的设置风格 字符串:具体风格的名称,适用于所有轨迹...:value} 按数据帧中的列标签设置插值方法 列表:[value] 对每条轨迹按顺序的设置插值方法 字符串:具体插值方法的名称,适用于所有轨迹 具体选项有线性 linear、三次样条 spline、...字典:{column:color} 按数据帧中的列标签设置颜色 列表:[color] 对每条轨迹按顺序的设置颜色 ---- categories:字符串格式,数据帧中用于区分类别的列标签 x:字符串格式...,数据帧中用于 x 轴变量的列标签 y:字符串格式,数据帧中用于 y 轴变量的列标签 z:字符串格式,数据帧中用于 z 轴变量的列标签 (只适用 3D 图) text:字符串格式,数据帧用于显示文字的列标签

    4.6K10
    领券