首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【CQA论文笔记】基于异构社交网络学习的社区问答方法,同时建模问题、回答和回答者

    【导读】传统的社区的问答(CQA)仅对问题和答案的内容进行编码,为问题准确地匹配高质量的回答。这篇文章提出使用社区中用户的交互信息进行嵌入,借助了异构社交网络中大量的社交信息来缓解了CQA任务的稀疏性问题,辅助解决CQA任务。提出的框架协同地利用问题、回答和回答者之间的交互关系来学习回答的相对质量。另外,使用深度随机游走框架来充分利用异构社交网络中的信息,来提升问答匹配的效果。在大规模真实CQA数据上的实验表明,借助异构社交信息,提出的算法超过了当前最好的CQA算法。 【AAAI2016 论文】Commun

    04

    多项榜单第一,达摩院算法工程师深度揭秘让表格说话的TableQA技术

    在日常工作中,Excel 表格随处可见;在 APP 或网页中,表格是清晰友好的信息传递方式;在企业中,关系型数据库无所不在。由于表格数据结构清晰、易于维护,并且对人类理解和机器理解都比较友好,表格 / 关系型数据库是各行各业应用最普遍的结构化知识存储形式。 但在表格知识的查询交互中,门槛却不低:对话系统或搜索引擎并不能很好地将表格知识作为答案查询出来,而关系型数据库的查询更需要专业技术人员撰写查询语句(如 SQL 语句)来完成,对大多数用户来讲门槛更高。在这种背景下,表格问答技术(TableQA)通过将自然

    03
    领券