首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CTAB-GAN:高效且可行的表格数据合成

    虽然数据共享对于知识发展至关重要,但遗憾的是,隐私问题和严格的监管(例如欧洲通用数据保护条例 GDPR)限制了其充分发挥作用。合成表格数据作为一种替代方案出现,可在满足监管和隐私约束的同时实现数据共享。最先进的表格数据合成器从生成对抗网络 (GAN) 中汲取方法论,并处理行业中的两种主要数据类型,即连续数据类型和分类数据类型。在本文中,我们阐明了 CTAB-GAN,这是一种新颖的条件表 GAN 架构,可以有效地对各种数据类型进行建模,包括连续变量和分类变量的混合。此外,该模型还解决了实际表格数据集中的数据不平衡和长尾问题,即某些变量在大值之间具有显着的频率差异。这是通过利用条件 GAN 的信息损失和分类损失实现的。此外,该模型具有新颖的条件向量,可有效地对混合数据类型和数据变量的偏态分布进行编码。CTAB-GAN 在数据相似性和分析效用方面用当前的技术水平进行了评估。五个数据集的结果表明,CTAB-GAN 的合成数据与所有三类变量的真实数据非常相似,并导致五种机器学习算法的准确率更高,高达 17%。

    05

    编译型语言、解释型语言、静态类型语言、动态类型语言、强类型语言、弱类型语言概念与区别

    编译型语言和解释型语言 1、编译型语言 需通过编译器(compiler)将源代码编译成机器码,之后才能执行的语言。一般需经过编译(compile)、链接(linker)这两个步骤。编译是把源代码编译成机器码,链接是把各个模块的机器码和依赖库串连起来生成可执行文件。 优点:编译器一般会有预编译的过程对代码进行优化。因为编译只做一次,运行时不需要编译,所以编译型语言的程序执行效率高。可以脱离语言环境独立运行。 缺点:编译之后如果需要修改就需要整个模块重新编译。编译的时候根据对应的运行环境生成机器码,不同的

    011
    领券