首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【智驾深谈】Tesla再现匝道口致命隐患:谈高精地图和定位的重要性

    【新智元导读】估计最近Elon Musk是失眠的。Tesla又爆出月初有一次高速路上的翻车事故,车辆损失惨重,好在驾驶员和乘客只受了小伤。表面上看起来这并不是什么大新闻,因此并未引起国内外媒体的广泛关注,媒体关注也是因为致死车祸的余波未平。国外媒体只是简单描述了事故过程,而少数几个国内媒体也就翻译了一下。坦白来讲,刚一听到事故描述的时候,凭直觉,我觉得这又是一个目前L3自动驾驶架构存在的隐患,各种因素综合起来,致命也是有可能的。 一句话阐述一下观点:为了追求性价比,目前很多L3系统设计有且仅有视觉识别车道

    08

    【SLAM】改进EKF-SLAM方案,设计了SEVIS方案进行精确定位,计算量低,适用更多低算力平台

    实现移动和可穿戴传感器系统厘米级精确定位具有重要的实际应用意义。本文提出了一种高效高精度的视觉惯性SLAM算法方案,称为SEVIS(Schmidt-EKF-VI-SLAM)。该方案通过IMU数据与视觉图像最佳融合,来提供低误差的3D运动追踪。特别地,调整了Schmidt-Kalman滤波公式,在状态向量中选择性地包含信息特征,同时在它们成熟后将它们作为干扰参数(或Schmidt状态)处理。建模的这种变化无需不断更新施密特状态(或它们的协方差),允许EKF正确地解释它们与活动状态的相互关系,降低了计算量。因此,我们在地图大小方面实现了线性计算复杂度,在地图大小方面获得线性计算复杂度,而不是标准SLAM系统中的二次型。为了充分利用地图信息来约束导航漂移,提倡有效的关键帧辅助的2D到2D特征匹配,减少了大量3D到2D的特征匹配,解决了2D视觉测量与3D地图特征匹配的特征关联问题,同时还保障了长期闭环和重定位的稳定性。本文提出的SEVIS在仿真和实验中都得到了广泛的验证。

    03
    领券