小勤:不是啦,数据透视都是汇总的结果,我想要在Power Pivot模型里的原始明细表或这些表组合的一些明细数据。
经过了前两章的学习,终于走到了学习的深水区,Power BI的灵魂部分,数据建模Power Pivot。其实Power Pivot并不是一个新生事物,它自从2009年就上市了,可惜大多数人都没有听说过,好消息是你现在知道它的存在了。有人说PP是Excel20年来历史上最好的事,有没有那么神奇,我们就来一起探索验证吧。在本节我想先澄清几个重要的概念和啰嗦几个提示。
前文说到,Power BI直连SSAS,可以较大程度地解决数据加载刷新慢的问题。那么如何创建一个SSAS表格模型呢?本文是一个简化版的介绍,更详细的说明,请参考官网文档,或在公众号后台回复【SSAS】,获取英文版教程pdf。
小勤:上次在Power Query里实现了数据透视的文本合并问题,在Power Pivot里怎么实现啊?
当Power Pivot数据模型里的表很多的时候,到底这些表都是从哪儿来的?如果某个表的数据源需要改变,到底从哪改?
Power Query 作为桌面端数据清理和转换的工具,能极大解放生产力,将繁琐的数据处理工作从重复的劳动中解放出来。那么,Power Query 能否对外提供计算服务呢?或者说 Power Query 有没有对外提供的编程接口? 根据我的探索,似乎没有,但在网络上找到下面的两种 walkaround 方式,都比较小众。所以如果真的需要数据处理、数据分析服务的话,不如选择其他的方案,比如 pandas 等等,拥有更大的自由度。
小勤:哪里能改啊?或者能不能像Power Query那样利用Excel里的Cell函数做成动态的?
https://powerbi.microsoft.com/zh-cn/desktop
无论是Power BI 还是在Excel的Power Pivot中,当度量值非常多的时候,我们都有必须将度量值分门别类地进行分类管理。本期文章,我们将讲解如何在Excel的Power Pivot和Power BI中分别对度量值进行分类管理,方便我们对度量值进行管理和维护。 ---- 本期导读 一、Excel的Power Pivot中用表管理度量值 二、Power BI中按文件夹分类管理度量值 ---- 一、Excel的Power Pivot中用表管理度量值 在Excel的Power Pivot中,可以按不
因此,从 PowerBI 中也就不存在导出矩阵了,因为我们可以在 Excel 中直接利用这些成果了,例如:
👆点击“博文视点Broadview”,获取更多书讯 丰收的9月,好书实在是太多,技术方面不仅涉及AI安全、软件研发效能、前端性能、分布式高可用算法、MySQL高可用解决方案,还有讲给孩子听的C语言大师编程课、Cadence印制电路板设计;职场办公方面,不仅有Excel图表设计攻略,还有导图思维修炼大法;更有一本财富秘籍分享给你哦…… 本期书单精选9月的12本新书,希望为大家带来一场知识的饕餮盛宴! ---- 01 ▊《AI安全:技术与实战》 腾讯安全朱雀实验室 著 国内首部揭秘AI安全前沿技术力
知足知不足,有为有不为 数据透视图可以说是数据透视表的孪生兄弟,它们的设计原理及使用方法基本一致。所以我们在之前学习的关于数据透视表的知识基本都能应用到数据透视图中。 数据透视表与数据透视图,其实是一组数据的不同展现方式。以下关于Power Pivot与数据透视图的3个实用技巧值得我们学习掌握。 一、从数据模型到数据透视图 在Excel中制作图表,通常情况下是基于工作表中现有的数据的,也就是图表基于工作簿中的数据表生成。即使是使用数据透视图,也会同时生成数据透视表,然后再基于数据透视表的数据作图。 这
忽略指定过滤器后进行计算。 之前这个使用All函数生成忽略学科教师平均分的度量值,如果用AllExpect函数则可以写成
话说上回,我们提到了Power BI连接数据的三种方式:导入(Import),直接查询(Direct Query)和实时连接(Live Connection)。我们日常工作和学习中,用得最多的可能是导入方式。该方式在功能上没有任何限制,最大限度地发挥了Power BI集数据清洗、建模、可视化等为一体的优势。但该方法也有不足。比如当数据量相对较大时(如几张表的记录有几十万条以上),导入和刷新数据,都会耗费相当长的时间,也占本地空间较多。
在Excel中,我们可以使用Power Pivot和数据透视表相结合的方法来动态计算近N天的数据变化的情况。比如,我们按选择一个日期,计算当前日期的前7天、前15天,前30天等近期的数据变化情况。如图所示: 这种方法不仅可以提高数据透视表的效率,还可以打造更多的分析的维度。 初始的数据源和数据模型如下图所示: 在这个模型中,我们新建一个日期表,用来筛选订单表中的下单日期。这个例子是简化过来的。 为了当我们选择一个日期的时候,在我们透视表中和数据透视图中能显示选择的近N天的数据,我们还需要做两件事: (1
Power Query 可以在 Power BI 或 Excel 中使用,很多人一开始就在想到底用哪个平台来使用 Power Query,其实不必为此纠结,总有一天会意识到需要把查询复制到一个另一个中的。这有可能是将查询从一个 Excel 工作簿中复制到另一个 Excel 工作簿中,从 Excel 复制到 Power BI,或者从 Power BI 复制到 Excel。在本章中,将探讨将查询从一个工具快速移植到另一个工具的方法。请记住,虽然本书的重点是 Excel 和 Power BI,但这些步骤对于任何承载 Power Query 的工具来说几乎是相同的,即使它包含在其他微软产品或服务中。
在使用Excel Power Pivot制造超级透视表的时候,很多人喜欢将外部数据直接导入Power Pivot,而不是使用Power Query预处理一番。理由是:数据源已经非常规范了,无需额外处理。
1. 撤销动作的不同 Power Pivot在公式生成后就无法进行撤销,只能删除重写。 而在Excel中撤销是很容易实现的。 2. 快速计算公式的不同 Power Pivot只能通过一个一个度量书写。
在使用Excel Power Pivot制作超级透视表的时候,很多人喜欢将外部数据直接导入Power Pivot,而不是使用Power Query预处理一番。理由是:数据源已经非常规范了,无需额外处理。
👆点击“博文视点Broadview”,获取更多书讯 传统的Excel单表虽然可以有100万行数据的承载量,但是在实际分析时,20万行的数据就已经让传统的Excel非常吃力了。 但是,如果使用Excel中的Power Query和Power Pivot商务智能组件,即使是上百万行数据,也可以在短时间内快速完成处理和分析。 Power Query在Excel和Power BI Desktop中都是内置组件,并且管理界面和知识体系保持了高度一致。 其实,Power BI中的Power Query和Power P
小勤:通过Power Pivot生成的数据透视表,里面的“前10项”筛选功能好像有点儿问题啊,你看这个数据:
小勤:怎么将Excel里Power Pivot的数据模型导入到Power BI里啊?
最近,有朋友在用Power Pivot构建表间关系的时候,出现了一个问题:明明我已经删除了重复项,但构建表间关系的时候,还是说我两个表都有重复的数据!结果表间关系建立不起来!
大海:这是因为你订单ID这一列里不全是数字。所以只能用文本类型类表示。而且错误信息里提示也很明确,既提示了错误类型,也显示了第一个出错的值是什么。
首先数据量可能很大,超出Excel行数限制,比方一亿行;数据的种类很多,同一报表有的数据来自数据库,有的来自本地文件,有的来自Web等等。
TOP-N分析法通常用来分析客户、店铺或产品对于整体的贡献度问题。本节内容我们需要指定N个门店,分析这N个门店的产品销售总金额或毛利润对于整体的贡献度,如图所示。 在这个模型中,我们可以根据实际业务的需求,去个性化地选择以产品销售总金额或毛利润为观察对象,分析每个大区的前3名、前5名、前10名及所有门店的业绩对于整体业绩的贡献情况。 该模型主要的功能在于可以根据选择的指标动态地进行筛选,方便我们实时把握贡献最大的TOP-N的门店,开展有针对性的经营活动。下面介绍一下这个模型的具体的建立步骤。 第一部分:数
▊《Excel革命!超级数据透视表Power Pivot与数据分析表达式DAX快速入门》 林书明 著 电子书售价:39.5元 2020年07月出版 Power Pivot,又称超级数据透视表,是Excel 中一个全新的、强大的数据分析工具,堪称Excel 的一项革命性的更新。本书将带你快速学习并掌握Power Pivot 数据建模与DAX(数据分析表达式)的相关内容,帮助你显著提升Excel 数据分析能力。 本书在Power Pivot 与DAX 的讲解上具有一定的新颖性、独特性,读者对象为具有一定Exce
帕累托法则俗称80/20法则,即约80%的结果是由该系统中约20%的变量产生的。例如,20%的客户贡献了80%的收入,20%的产品贡献了80%的销售等等,意在帮助我们抓住工作中的关键事项。那么如何快速的进行帕累托分析?本文分别介绍下帕累托分析在Excel和Power BI desktop当中的应用。
小勤:这个数据明明是个数值啊,为什么用函数ISTEXT判断的时候,结果还是TRUE?也就是说这个还是文本?
作者 CDA 数据分析师 一套完整的 BI 报表应该至少具备以下四个条件: 条件一:能够批量处理有一定规模的数据; 条件二:能够保证数据的时效性及准确性; 条件三:能够将实际业务中所涉及的所有相关数
If you are dealing with Power BI/Power Pivot, it doesn’t take long before you encounter the DAX language for the first time. Jeffrey Wang is Principal Software Engineer Manager at Microsoft and is considered the father of DAX and the VertiPaq engine behind it.
对于很多使用Power Query或Power Pivot的朋友来说,工作中很容易碰到的一个情况就是——按条件求和!
小勤:大海,你最近一直叫我学Power Query,Power BI之类的,他们到底是啥呀?有啥牛B的呀?
Excel Power Pivot俗称超级透视表,具有强大的建模能力。一般情况下,Power Pivot的模型在Excel界面以数据透视表或数据透视图展现。但是,这种展现方式比较单一,无法实现复杂结构报表提取模型数据的需求。
大海:因为用Power Pivot处理的数据一般可能会比较多,甚至超过Excel 100多万行的情况,因此,为避免全部返回可能造成Excel的卡顿或崩溃,Power Pivot里默认设置返回行数为1000,这也是很多数据库查询工具的默认返回记录数。
一套完整的BI报表应该至少具备以下四个条件: 条件一:能够批量处理有一定规模的数据; 条件二:能够保证数据的时效性及准确性; 条件三:能够将实际业务中所涉及的所有相关数据整合到一起,搭建统一的多维数据
然后,我们继续用Power Pivot基于Power Query完全合并好的结果做了数据透视,得到最终结果:
小勤:这个透视表里的单价和折扣的汇总内容怎么去掉啊?这些汇总(平均)项是完全没有意义的:
小勤:我知道了,其实跟传统数据透视表的布局设置都是一样的了,就是取消分类汇总、取消行列总计、设置表格形式、合并居中……你关于数据透视布局的文章《随心所欲的分类汇总》和《行列表头,想合就合,想套就套》里说得很清楚了哦。
凡是在零售行业的同仁,必定要接触数字。各种报表——日报、周报、月报周期性的要制作:也许要追踪销售进度,也许要查看库存水位,也许要看人员绩效等等。
PP中,基于函数来完成,其使用的是DAX语言。大部分的操作都是在关联筛选后作出的计算和分析。
一般如果需要对数据透视表进行分组,数据如图1所示,数据支持的格式为数字格式以及日期格式,如图2和图3所示,文本格式通常无法进行分组组合。
查询Queries,代表的是我们平时所看的查询名称,例如下面这种,查询名称直接用表1进行替换即可。相当于删除此查询,请谨慎操作。
随着市场环境的复杂化,在数据分析中,能否提供更具商业洞察力的数据信息正在成为考核业务员能力的重要参考指标。加强以下两大块能力至关重要:
大海:既然这样的话,那用Power Pivot吧。直接在Power Pivot里实现这种特殊的计算。
大海:好吧,Power Query你学了那么多,Power Pivot也基本入门了,Power BI也可以同步开始学了,反正PQ和PP的知识除了操作上有一点点儿区别外,都是能在Power BI里直接用的。
👆关注“博文视点Broadview”,获取更多书讯 作者:ExcelHome创始人周庆麟 来源:《DAX权威指南》推荐序 在ExcelHome技术论坛上,经常会有这样的讨论话题:你希望下一个版本的Excel增加什么功能? 在2006年以前,很多人都说,希望Excel能提高单表处理数据的数量上限,最好能像Access那样可以建立多表查询。 自Excel 2007问世后,单表处理数据的量,从65,536行增加到了1,048,576行。 于是,很多人表示相当满意,但还是有一些人表示,只是简单增加单表的行数不够
大海:传统的数据透视表功能很强大,但非常奇怪的是——不支持非重复计数!你要用数据透视同时实现其他统计和非重复计数,又不想在原始数据表里增加辅助列的话,得考虑用Power Pivot了。
小勤:通过DAX查询,从Power Pivot数据模型里取数据返回Excel的功能这么强大,可是,写查询公式时啥提示都木有,要记函数就算了,还得记住每个表名和字段名?得多累啊!
领取专属 10元无门槛券
手把手带您无忧上云