首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    每日论文速递 | Agent-Pro:通过策略级反思和优化学习进化

    摘要:大型语言模型对不同的任务表现出强大的解决问题的能力。然而,大多数基于LLM的代理都被设计为具有复杂提示工程的特定任务求解器,而不是能够通过交互学习和进化的代理。这些任务求解器需要手动制作的提示来告知任务规则并调节LLM行为,固有地使其无法解决复杂的动态场景,例如,大型互动游戏。有鉴于此,我们提出了Agent-Pro:一个基于LLM的Agent,具有策略级反射和优化,可以从交互式体验中学习丰富的专业知识,并逐步提升其行为策略。具体而言,它涉及到一个动态的信念生成和反思过程的政策演变。Agent-Pro不是行动层面的反思,而是迭代地反思过去的轨迹和信念,微调其非理性信念,以制定更好的政策。此外,深度优先搜索用于策略优化,确保策略收益的持续增强。代理专业评估两个游戏:二十一点和德州扑克,优于香草LLM和专业模型。我们的研究结果表明,Agent-Pro可以在复杂和动态的场景中学习和发展,这也有利于许多基于LLM的应用程序。

    00
    领券