在金融科技迅猛发展的今天,量化交易作为现代金融领域的重要分支,以其精准、高效和自动化的特点,吸引了越来越多的专业人士投身其中。Python作为一种功能强大、易于学习和使用的编程语言,在量化交易领域的应用日益广泛。本文将围绕“Python 量化交易工程师养成实战”这一主题,深入探讨如何成为一名专业的Python量化交易工程师。
在当今金融市场的快速变化中,量化交易凭借其高效、精准的特点,逐渐成为金融界的新宠。而Python,作为量化交易领域的得力助手,为工程师们提供了强大的技术支持。本文将深入解析Python量化交易工程师的培养之路,带领读者走进这个金融高薪领域。
谢谢大家的支持!现在该公众号开通了评论留言功能,你们对每篇推文的留言与问题,可以通过【写评论】给圈主留言,圈主会及时回复您的留言。 想在市场上赚钱,必须同时具备两样能力: 研究:做出正确的能够获利的决策,也就是寻找Alpha的能力 交易:基于研究的结果和交易信号,执行相应的下单风控等操作,也就是将Alpha落实到你账户盈利上的能力 研究方面 python编程能力: python基础编程,必须掌握,不仅仅是会语法,还有各种语言细节的坑(当然比C++少很多)。对于常年使用R MATLAB SAS的研究人员来
随着科技的不断发展,自动化交易成为了投资者们追逐的一种高效、智能的投资方式。Python作为一种简洁、灵活且功能强大的编程语言,被广泛应用于自动化交易领域。本文将介绍如何使用Python进行自动化交易,并提供一些示例代码。
“量化投资”是指投资者使用数理分析、计算机编程技术、金融工程建模等方式,通过对样本数据进行集中比对处理,找到数据之间的关系,制定量化策略,并使用编写的软件程序来执行交易,从而获得投资回报的方式。其核心优势在于风险管理更精准,能够提供超额收益。
vnpy [1] 基于python的开源交易平台开发框架。项目的用户包括:私募基金,证券自营、资管,期货公司,高校的金融研究院系,个人投资者等,机构用户加起来至少20多家。 该项目拥有较为丰富的Py
BigQuant – 你的人工智能量化平台 – 可以无门槛地使用机器学习、人工智能开发量化策略,基于python,提供策略自动生成器
Python 的学习者中,有相当一部分是冲着爬虫去的。因为爬虫可以帮你解决很多工作和生活中的问题,节约你的生命。不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。 量化交易,就是以数学模型替代人的主观判断来制定交易策略。通常会借助计算机程序来进行策略的计算和验证,最终也常直接用程序根据策略设定的规则自动进行交易。 Python 由于开发方便,工具库丰富,尤其科学计算方面的支持很强大,所以目前在量化领域的使用很广泛。市面上也出现了很多支持 Python 语言的量化平台。通过这些平台,你可以很方
问:现在上有关numeric analysis的课时,都用Python,实际工作时候呢?
Python作为一种多用途的编程语言,在量化分析领域也展现出了强大的应用能力。通过Python,我们可以对金融市场数据进行获取、清洗、分析和可视化,从而进行量化交易、风险管理和投资决策。本文将从入门到精通,带领读者深入探索Python在量化分析中的实战应用,通过案例解析详细介绍Python量化分析的技术原理和实现过程。
随着Python编程语言的流行和普及,越来越多人对如何应用Python做金融数据分析和量化交易充满兴趣。但是不少人对量化投资本身存在一定的误解或认识不清,有的人过于异想天开,认为可以躺着挣钱(怕是只有岛国老师吧);有的人则因循守旧,认为没啥卵用;也有的人盲目追求模型的复杂性,在编程和数学中迷失了方向。
量化交易的涵盖范围很大,程序化交易,算法交易,高频交易,自动化交易平台等等都可以算作量化交易。
Python 的学习者中,有相当一部分是冲着爬虫去的。因为爬虫可以帮你解决很多工作和生活中的问题,节约你的生命。不过 Python 还有一个神秘而有趣的应用领域,那就是量化交易。
4、测试和评价。最直接的交易策略是动力大于0,说明股票有上涨的能量,释放买入信号。
本文将详细介绍日内网格交易策略的原理,并结合Python代码示例,展示如何在掘金平台上实现这一策略。
微信支付接口 wzhifuSDK [1]- 由微信支付SDK 官方PHP Demo移植而来,v3.37 weixin_pay [2]- 是一个简单的微信支付的接口 weixin_pay [3]- 微信
CCXT(CryptoCurrency eXchange)交易库,一个JavaScript/Python/PHP加密货币交易库,支持超过100种山寨币与比特币交易所。
大数据文摘作品,转载要求见文末 编译 | 徐宇文,蒋晔、范玥灿 卞峥,yawei xia 技术早已成为金融业的一项资产:金融交易的高速、高频与超大数据体量结合,促使金融机构在一年一年不断地加深对技术的关注,在今天,技术已经切实成为了金融界的一项主导能力。 在金融界最受欢迎的编程语言中,你会看到R和Python,与C++,C#和Java这些语言并列。在本教程中,你将开始学习如何在金融场景下运用Python。本教程涵盖以下这些方面: 基础知识:对于金融入门阶段的读者,你将会首先学到股票和交易策略,什么是时间序列
可以说,区块链是自互联网诞生以来最重要和最具颠覆性的技术之一。作为比特币和其他加密货币背后的核心技术,区块链在过去几年获得了广泛关注。
在当今金融市场的竞争激烈和信息爆炸的环境下,投资者和交易员需要借助科技手段来提高决策效率和交易策略的精准度。而量化分析作为一种基于数据和算法的交易策略,正逐渐成为市场主流。Python作为一种简洁、易学、功能强大的编程语言,成为了量化分析的首选工具之一。
前几天我的前老板 T 跟我聊了下他正在着手筹划的 algo options trading 项目,他拜托我帮他找找合适的工程师。我仔细研读了他的计划书,感觉还有点意思。基本思路是:跟随股票的涨跌趋势,在 该股的 option 市场选择合适的合约下注。如果预测股票上涨,则购买相应的 Call option,否则购买 Put option。他目前有一个运作还不错的策略,在手工执行和测试中。未来,他希望这个项目不仅可以为自己公司的 fund 赚钱,还能逐渐转化成一个平台,简化人们做程序化交易的难度,就像 Robinhood 简化大家买卖股票的难度一样。T 会为他的初始团队提供丰厚的,有竞争力的工资,以及交易系统盈利的一部分作为奖金。
随着科技的进步,人工智能(Artificial Intelligence,AI)正逐渐渗透到各个行业中,其中包括金融领域。
摘要:如何优雅地夸一个程序员呢?vscode-rainbow-fart 作为一个彩虹屁的项目,深得程序员心,能在你编程时疯狂称赞你的除了你自己,还有它。除了鼓励之外,Super Linte 是官方出品的旨在保证代码和文档一致性的工具,有了它,你可以更优雅地进行编程。说完优雅编程,来说下优雅使用 k8s,那就不得不提 Lens,一个专业管理 k8s 工具。 以下内容摘录自微博@HelloGitHub 的 GitHub Trending,选项标准:新发布 | 实用 | 有趣,根据项目 release 时间分类
如果你希望按照自己的需求打造金融交易平台,那么应当选择合适的交易撮合引擎进行二次开发而不是基于完整的交易平台实现进行修改。本文将介绍10个采用不同语言开发的开源的撮合引擎,你可以根据自己的需要选择。
你应该听说过了以太坊[4]了,准备进入以太坊的世界冒险了吗?这篇文章将快速介绍一些区块链基础知识,然后让了解与模拟的以太坊节点进行交互--读取区块数据,检查账户余额并发送交易。在这个过程中,我们将理解传统的应用程序与这种新的去中心化应用之间的差异。
由于有免费的CTP接口,期货程序化交易目前比较普遍,很多人都尝试过在文华财经、金字塔之类的软件上回测和编写实盘策略。
区块链可以说是互联网成立以来最重要和最具颠覆性的技术之一。它是比特币和其他加密货币背后的核心技术,在过去几年引起大家广泛的关注。 区块链的核心是一个分布式数据库,允许双方直接交易,而无需中央机构,也就是通常大家所说的"去中心化"。"去中心化"这个简单而重要的概念对银行、政府和市场等机构具有重大意义,可以说,任何依赖中央数据库作为核心竞争优势的企业或组织都可能受到区块链技术的挑战甚至颠覆。 本文的目标是给你一个区块链技术的实用介绍,而不是炒作比特币和其他加密货币概念。第1节和第2节介绍了区块链一些核心概念
大数据文摘出品 编译:蒋宝尚 在自动化的新时代,程序员的角色变得越来越重要。多年来,投资银行也不断招募顶级程序员,以帮助其交易员用软件执行策略。这也意味着,如果仅仅掌握华尔街的行话,那么你将不再能够满足投行分析师的岗位需求。 负责领导北美市场和证券服务部门的Lee Waite表示,从七月份开始,计算机编程语言将作为银行分析师培训课程的一部分。 Waite在接受采访时说:“我们正在更快的融入日益变化的世界,至少加强对编程的理解是非常有价值的。 金融交易的日益数字化,意味着金融公司已经越来越重视数字工具的采用,
金融领域也是 Python 的重要方向之一,我知道有一些读者就是冲着做量化交易才接触 Python 的。今天给大家分享一个使用 Python 的期货交易API。
如果我们需要在运行时计算某些项目的百分比,可以使用 Python 中的随机数生成器或者计数器来模拟这个过程。这取决于我们想要模拟的具体情况和场景。今天我将通过文字方式详细记录我实操过程。
最近有越来越多的朋友在知乎或者QQ上问我如何学习入门Python,就目前需求来看,我需要写这么一篇指南。
大数据文摘作品 编译:大山、笪洁琼、Yawei Xia 对于K线图,相信做交易的朋友都不陌生。本文作者用简单明了的语言解释了三日K线的交易原则,也分享了如何用python绘制K线图的方法和代码。 关于日本K线交易 据说日本人在十七世纪就已经运用技术分析的方法进行大米交易,一位名叫本间宗久的坂田大米贸易商发明了“蜡烛图”这一技术来分析每日市场上大米现货价格。现代K线图之父史蒂夫尼森认为,通过“蜡烛图”进行正式交易是自19世纪50年代开始的。 在本文,我们要重点解决以下两个问题: 1、使用Python绘制K线图
投资理财是几乎是每个人的人生必修课,修的好,能带来很多睡后收入。但是没有丰富的投资知识,不要进入股市。假如你有一些闲钱,这些钱如果没了,对你的生活质量丝毫不受影响,那么,可以用这些闲钱玩一玩股票,记住一点,不可以使用杠杆,如果没有闲钱,那就玩模拟炒股吧。
量化,一个横跨多个学科领域的工作。已经在不同场合,听了无数次的三座大山:较好的数学功底、编程技能、金融知识。
目前vn.py官方适用的python版本是2.7,有关python3的版本正在开发中,但鉴于最近大家对python3需求的呼声较高,论坛有两个帖子提供了适用于python3版本的交易接口,感谢阿杜和何先生的分享!
如果你是一名交易员或者从事金融服务行业,那么 Excel 就是你的生计之本。有了它,你可以分析价格和实时数据、评估交易组合、计算 VaR、执行回测等等;有了它,你就是数据透视表、公式、图表甚至 VBA 和 PowerQuery 的专家。
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
相比TA-Lib在技术分析领域的地位,QuantLib在金融工程领域的地位可以说有过之而无不及。
编译 | 晚君、Molly、蒋宝尚 来源 | BlockChange 区块链作为比特币和其他加密货币的核心技术,在最近几年引起了全世界的注意,但是各国这一颠覆性的技术态度不一,因为其去中心化的分布式结构,可以使用户之间直接进行交流,无需中心节点参与的这种技术模式对银行、证券等机构带来了极大影响。 在本篇文章,抛开介绍区块链的技术特点和应用场景,手把手的教大家如何用python实现一个基础的区块链,和一个区块链的客户端。 我们实现的区块链有如下几个特性: 可以向区块链中添加多个节点。 工作量证明(PoW)
老读者都知道,Python的一个应用方向就是——量化交易,恰好最近收到了清华出版社赠送的 《深入浅出Python量化交易实战》 一书,因为平时对数据科学和机器学习都比较感兴趣,简单试读了一下。
本文主要内容翻译自Learn Blockchains by Building One 作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。 对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。 但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。 先看看什么去区块链? 假如你是一位女生,在某个晚上,你男票跟你说了一句:"我爱你一生一世"; 然后,你把这句话发给了你的闺蜜
2017年完成了大部分计划中的上层应用模块开发,剩余部分将在今年上半年加速推进,争取早日发布v2.0稳定版,为量化交易员提供一套完整成熟的交易系统解决方案。 Docker镜像 Docker技术日渐完善,多位vn.py社区用户也已经贡献了较为成熟的镜像代码(位于vnpy/docker目录下),实现的功能包括: 在Docker中运行基于vnpy.rpc的服务器,并在外部通过GUI客户端来实现监控操作(类似examples/ServerClient的架构) 在Docker中启动Ubuntu图
http://blog.csdn.net/liuyukuan/article/details/53560278
在ChatGPT引领的AI浪潮下,涌现了一大批AI应用,其背后其实蕴含着一个基本事实:AI能力得到了极大突破——大模型的能力有目共睹,未来只会变得更强。这世界唯一不变的就是变,适应变化、拥抱变化、喜欢变化,天行健君子以自强不息。我们相信未来会有越来越多的大模型出现,AI正在逐渐平民化,将来每个人都可以利用大模型轻松地做出自己的AI产品。
VNPY仿真柜台的用法快速入门可以参考这篇文章 (来自VNPY知乎官方公众号) https://zhuanlan.zhihu.com/p/166244874
元素序列:像集合一样,流也提供了一个接口,可以访问特定元素类型的一组有序值,因为集合是数据结构,所以他的主要目的是以特定的时间/空间复杂度存储和访问元素,但流的目的在于表达计算。集合讲的是数据,流讲的是计算。
如今Python语言的学习已经上升到了国家战略的层面上。Python语言是人工智能的基础语言,国家相关教育部门对于“人工智能普及”格外重视,不仅将Python列入到小学、中学和高中等传统教育体系中,并
领取专属 10元无门槛券
手把手带您无忧上云