贝叶斯统计是一种基于概率的统计分析方法,它在Python数据分析领域的应用日益广泛。与传统频率学派不同,贝叶斯统计充分利用先验信息,并根据新的数据不断更新对参数的估计。本文将详细介绍贝叶斯统计在Python数据分析中的高级技术点,包括贝叶斯推断、概率编程和马尔科夫链蒙特卡洛等。
统计学是一门研究数据收集、分析和解释的学科,它在数据分析中起着重要的作用。Python作为一种功能强大的编程语言,在数据分析领域拥有广泛的应用。本文将介绍Python数据分析中的重要统计学概念,帮助您更好地理解和应用统计学知识。
在编程中,我们经常会遇到需要根据一定的概率来做出选择的情况,比如在游戏中随机生成事件、在机器学习中采样数据等。Python提供了多种方法来实现这种基于概率的选择,本文将介绍其中的几种方法,并给出相应的代码示例。
Python 现如今已成为数据分析和数据科学使用上的标准语言和标准平台之一。那么作为一个新手小白,该如何快速入门 Python 数据分析呢?
在阅读之前,请一定要查看第 1 部分和第 2 部分!
大数据文摘作品 编译:王梦泽、丁慧、笪洁琼、Aileen 数据科学团队在持续稳定的发展壮大,这也意味着经常会有新的数据科学家和实习生加入团队。我们聘用的每个数据科学家都具有不同的技能,但他们都具备较强的分析背景和在真正的业务案例中运用此背景的能力。例如,团队中大多数人都曾研究计量经济学,这为概率论及统计学提供了坚实的基础。 典型的数据科学家需要处理大量的数据,因此良好的编程技能是必不可少的。然而,我们的新数据科学家的背景往往是各不相同的。编程环境五花八门,因此新的数据科学家的编程语言背景涵盖了R, MatL
时间序列分析是数据科学家最常见的问题之一。大多数时间序列解决方案涉及经济预测、资源需求预测、股票市场分析和销售分析。
本文介绍由美国加州大学伯克利分校计算生物学中心的Nir Yosef为通讯发表在 Nature Biotechnology 的研究成果:本文作者提出了scvi-tools,这是一个用于对单细胞组学数据进行深度概率分析的 Python 库。此工具主要作用是整合多种概率模型,并解决不同概率模型之间接口不一致的问题。它集成了多种高效的概率方法,涵盖多项基本分析任务,可通过标准化、易于使用的界面访问并接入到Scanpy、Seurat和Bioconductor工作流程中。通过这种标准化方式,开发人员能够在不同模型之间开发新功能。它还为以scvi-tools为基础的可扩展软件构建块提供了一个开发环境,在该环境中,可以有效地开发、基准测试和部署用于单细胞组学的新概率模型。
MLJ是一个用纯Julia编写的开源机器学习工具箱,它提供了一个统一的界面,用于与目前分散在不同Julia软件包中的有监督和无监督学习模型进行交互。
欢迎来到监督学习的基石。我们首先讨论一个小方案,它将构成未来讨论的基础。接下来,我们将讨论关于后验概率的一些数学,也称为贝叶斯定理。这是朴素贝叶斯分类器的核心部分。最后,我们将探索 python 的 sklearn 库,并在 Python 中编写一个关于 Naive Bayes Classifier 的小段代码,以解决我们在开始时讨论的问题。
极大似然估计(Maximum likelihood estimation, 简称MLE)是很常用的参数估计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。也就是说,如果已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值(请参见“百度百科”)。
大数据文摘作品,转载要求见文末 作者 | Elaine,田桂英,Aileen 导读:前段时间小白学数据专栏出了一期Python小抄表,后台反应强烈(点击查看大数据文摘小白学数据系列文章《小白学数据之常用Python库“小抄表”》)。确实,数据科学越来越热,但是对于想要学好它的小白们却很头疼一个问题,需要记住的操作和公式实在是太多了!小抄表是很实用的办法,那么今天我们就为大家送出一份大杀器:28张小抄表合辑!不管你是Python或R的初学者,还是SQL或机器学习的入门者,或者准备学习Hadoop,这里都有能满
在进行实战之前,我们了解一些SnowNLP的简单使用,可对后续我们数据分析有一定的帮助。下边简单举几个例子,帮助大家理解SnowNLP的作用。
你好!我是Jose Portilla,Udemy的讲师,有超过25万名学生注册了各种各样的课程,包括Python的数据科学和机器学习、R编程的数据科学、Python的大数据等等。
朴素贝叶斯(Naive Bayes)算法是一种简单而有效的分类算法,它基于贝叶斯定理和特征之间的独立性假设。在本文中,我们将使用Python来实现一个基本的朴素贝叶斯分类器,并介绍其原理和实现过程。
去搜错误码(可以看看日志文件里有没有),不搜不知道,一搜真香,网上大概率会有对应问题的解决教程
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 知乎专栏:化学狗码砖的日常 blog:http://ipytlab.com github:https://github.com/PytLab ❈ 前言 上一篇总结了决策树的实现,本文中我将一步步实现一个朴素贝叶
wim+R输入cmd,然后cd到python的pip路径,即安装:pip install scipy即可
高斯混合模型(Gaussian Mixture Model,GMM)是一种基于概率分布的聚类方法,它假设数据集由若干个高斯分布组成,每个高斯分布代表一个簇。在本文中,我们将使用Python来实现一个基本的高斯混合模型聚类算法,并介绍其原理和实现过程。
專 欄 ❈那只猫,Python中文社区专栏作者,福州大学大二水利专业学生,纯种非CS科班的数据分析师,熟练掌握Python数据分析大礼包,因长时间玩弄Keras而陷入深度学习的大坑中不能自拔。❈— 今天,谷歌联合Columbia University、Adobe(就是你们知道的那个Adobe)提出深度概率编程语言Edward,我就其发布Edward的专业论文,给大家介绍一下,这个秒天秒地秒空气的牛逼哄哄的新语言(框架)。 为什么开发Edward? 因为现在的概率编程语言啊, Too Young!Too S
选自arXiv 机器之心编译 2017 年 5 月,清华大学朱军教授在机器之心 GMIS 2017 大会现场详解了他们开发的贝叶斯深度学习 GPU 库珠算。近日,清华大学公开了珠算相关论文,机器之心对
当我们想搭建网站时,可以选择功能全面的Django、轻量的Flask等web框架;当我们想做一个爬虫时,可以使用Scrapy框架;当我们想做数据分析时,可以选择Pandas数据框架等,这些都是一些很成熟的第三方库。
Julia新推出了一个超高纯度的机器学习框架MLJ,团队希望把MLJ打造成一个灵活的、用于组合和调整机器学习模型、具备高性能、快速开发的框架。Julia团队之所以推出MLJ,部分原因也是受到MLR的影响。
自然语言处理是什么?谁需要学习自然语言处理?自然语言处理在哪些地方应用?相关问题一直困扰着不少初学者。针对这一情况,作者结合教学经验和工程应用编写此书。《自然语言处理理论与实战》讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。由于自然语言处理的特殊性,其是一门多学科交叉的学科,初学者难以把握知识的广度和宽度,对侧重点不能全面掌握。《自然语言处理理论与实战》针对以上情况,经过科学调研分析,选择以理论结合实例的方式将内容呈现出来。其中涉及开发工具、Python语言、线性代数、概率论、统计学、语言学等工程上常用的知识介绍,然后介绍自然语言处理的核心理论和案例解析,最后通过几个综合性的例子完成自然语言处理的学习和深入。《自然语言处理理论与实战》旨在帮助读者快速、高效地学习自然语言处理和人工智能技术。
推荐理由:本书用诙谐有趣的讲述方式为大家介绍了python的基本语法,非常适合非计算机专业的初学者作为入门书来看。在这个过程中,该书会让你完成一系列习题,而你则可以通过反复练习来学到技能,这些习题也是专为反复练习而设计的。对于一无所知的初学者来说,在能理解更复杂的话题之前,这可以说是最有效的学习方式。
21世纪以来,全球化的加速和互联网的蓬勃发展,带来全球范围内电子数据的爆炸性增长,人类迈入了大数据时代。
选自Uber 作者:Noah Goodman等 机器之心编译 参与:黄小天、刘晓坤 近日,Uber AI Lab 与斯坦福大学的研究团队开源了全新概率编程语言 Pyro。该语言基于 Python 与 PyTorch 之上,专注于变分推理,同时支持可组合推理算法。Pyro 的目标是更加动态(通过使用 PyTorch)和通用(允许递归)。它有一个灵活的基元库,用于创建新的推理算法并使用概率程序。Pyro 中可组合推理的核心抽象是 poutine(Pyro Coroutine 的简称)。Pyro 的推理算法是通过
專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目管理:PMO,变革,生产转移,清算和资产
精选了近期推送的文章,读者朋友们不放抽一些时间学习下。要想比别人多掌握一些知识和技巧,只需要抽取一些零碎时间,反复过几遍。一方面学知识点,另一方面学他人的技巧也好,经验、思维也罢。
哈喽朋友们,欢迎来到本期『什么值得看』,如果你还不知道这是干啥的,可以戳往期内容: 什么值得看 | 0102——0109 什么值得看 | 0110——0116 每周日定期分享,内容可能会比较多比
在机器学习的世界中,以概率分布为核心的研究大都聚焦于正态分布。本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在数据科学和机器学习领域,它几乎无处不在。
在这篇文章中,我将介绍用于Latent Dirichlet Allocation(LDA)的lda Python包的安装和基本用法。我不会在这篇文章中介绍该方法的理论基础。然而,这个模型的主要参考,Blei etal 2003可以在线免费获得,我认为将语料库(文档集)中的文档分配给基于单词矢量的潜在(隐藏)主题的主要思想是相当容易理解的而这个例子(来自lda)将有助于巩固我们对LDA模型的理解。那么,让我们开始......
应用方式:用于研究一个连续因变量与一个或多个自变量之间的线性关系。通过对数据进行拟合,确定自变量对因变量的影响程度(系数),并可以用来预测给定自变量值时因变量的期望值。例如,在经济学中,用于分析GDP与投资、消费、出口等因素的关系;在市场营销中,预测销售额与广告支出、价格、季节因素等的关系。
如今的公司很难找到优秀的机器学习人才。当然,任何特定技能的要求都取决于机器学习项目的用途和要求,但是您的机器学习履历中必须具备的某些技能在各种项目要求中是一致的。通常,公司希望面试者具备丰富的机器学习技能,理论和编码能力,以便在需要时能够跨部门参与机器学习项目。 该领域的专家不仅需要具有扎实的机器学习算法水平,了解什么时候该应用什么算法,还需要掌握如何集成和接口。所需的核心技能是专门的,要求具有良好的数学理解,分析思维和解决问题的能力。尽管每个项目文件要求的特定技能各不相同,但对于所有角色而言,核心的机器学习技能都是不变的。
Probability 是 TensorFlow 的概率推理工具集,它是集建模工具、推理算法、一些有用的模型和一般统计计算于一身的开发工具集合。利用 TensorFlow,Probability 可以将概率方法和深度网络、通过自动差分的基于梯度的推论、大数据集、通过硬件(比如 GPU)加速的模型和分布式计算结合起来。 该软件的主要内容包括以下几个部分: 采样算法,例如,tfp.metropolis_hastings,tfp.hmc,tfp.monte_carlo。 示例模型(tfp.examples):使用
为什么正态分布如此特殊?为什么大量数据科学和机器学习的文章都围绕正态分布进行讨论?我决定写一篇文章,用一种简单易懂的方式来介绍正态分布。
AI检测人员工衣工服着装不规范识别系统基于opencv+yolo网络深度学习模型,AI检测人员工衣工服着装不规范识别系统对现场画面中人员着装穿戴实时监测分析。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
SymPy是一个用于符号数学计算的Python库。与传统的数值计算库不同,SymPy专注于处理符号表达式,使得用户能够进行符号计算、代数操作和解方程等任务。本教程将介绍SymPy库的基本概念、常见用法和高级功能,帮助读者更好地理解和使用SymPy。
SciPy(Scientific Python)是一个开源的Python科学计算库,用于解决科学与工程领域的各种数值计算问题。它建立在NumPy库的基础之上,并额外提供其他更高级的功能与工具,涵盖了许多科学分析领域——包括数值积分、优化、插值、信号和图像处理、线性代数、统计分析等。其中,SciPy常用的一些功能如下所示。
有不少同学学习 Python 的原因是对人工智能感兴趣,有志于从事相关行业。今天我们来聊聊这个方向所需要的一些技能。
作为科学计算中的中流砥柱,SciPy 从 2001 年到现在已经走过了十九个年头,它为最优化、积分、微分方程等各种数值计算提供了完整的流程,也为科研分析人员提供了最好用与高效的开源库。
《科学+遇见人工智能》李开复、张亚勤、张首晟等20余位科学家与投资人共同解读AI革命
本文转自网络,如涉侵权请及时联系我们 人工智能相关岗位中,涉及到的内容包含: 算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉
算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉度量、图像识别、语音识别、推荐系统、系统算法、图像算法、数据分析、概率编程、计算机数学、数据仓库、建模等关键词,基本涵盖了现阶段人工智能细分领域的人才结构。
LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。
大家可能知道,要做概率编程 (Probabilistic Programming) 的话,TensorFlow Probability (TFP) 这个库是个不错的选择。
来源:深度学习前沿本文约1400字,建议阅读5分钟这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。 一 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en
NO.1 人工智能科普类:人工智能科普、人工智能哲学 《智能的本质》斯坦福、伯克利客座教授 30 年 AI 研究巅峰之作 《科学 + 遇见人工智能》李开复、张亚勤、张首晟等 20 余位科学家与投资人共
领取专属 10元无门槛券
手把手带您无忧上云