2018 年的大部分时间我都在试图训练神经网络时克服 GPU 极限。无论是在含有 1.5 亿个参数的语言模型(如 OpenAI 的大型生成预训练 Transformer 或最近类似的 BERT 模型)还是馈入 3000 万个元素输入的元学习神经网络(如我们在一篇 ICLR 论文《Meta-Learning a Dynamical Language Model》中提到的模型),我都只能在 GPU 上处理很少的训练样本。
在第 11 章,我们讨论了几种可以明显加速训练的技术:更好的权重初始化,批量标准化,复杂的优化器等等。 但是,即使采用了所有这些技术,在具有单个 CPU 的单台机器上训练大型神经网络可能需要几天甚至几周的时间。
Wasm的进展将帮助我们构建更好、更安全、更具可移植性的应用程序,充分享受真正共享函数的好处。
摘要:本文通过在GPU云服务器上部署和配置MySQL数据库,并使用RAPIDS GPU数据处理库进行加速,来详细阐述如何利用GPU强大的并行计算能力,加速MySQL数据库的查询和分析操作,使其比传统CPU实现获得数倍的性能提升。
链接: https://ahmedbesbes.com/end-to-end-ml.html
当今,包括推理应用程序和智能体在内的大多数LLM应用程序是用Python编写的,但这种形势即将发生改变。对于新一波开发人员来说,Python太慢了,太臃肿了,而且自相矛盾,非常笨拙。其实,LLVM的Chris Lattner,即Clang和Swift的发明者已经证实了Python比编译语言慢35,000倍——这也是为什么他发明了Mojo语言作为Python的替代品。
多亏了更快更好的计算,我们终于能利用神经网络和深度学习真正的力量了,这都得益于更快更好的 CPU 和 GPU。无论我们喜不喜欢,传统的统计学和机器学习模型在处理高维的、非结构化数据、更复杂和大量数据的问题上存在很大的局限性。 深度学习的好处在于,在构建解决方案时,我们有更好的计算力、更多数据和各种易于使用的开源框架,比如 keras、TensorFlow 以及 PyTorch。 深度学习的坏处是什么呢?从头开始构建你自己的深度学习环境是很痛苦的事,尤其是当你迫不及待要开始写代码和实现自己的深度学习模型的时候。
Glances 是一款免费的开源、现代、跨平台、实时 top 和类似 htop 的系统监控工具,与同类工具相比,它提供了先进的功能,并且可以在不同的模式下运行:作为独立模式、客户端/服务器模式,并在 Web 服务器模式下。
随着新版本的推出,RAPIDS 迎来了其推出一周年纪念日。回顾所经历的一年,RAPIDS团队就社区对该项目的关心和支持表示衷心的感谢。此前,RAPIDS获得了其首个BOSSIE奖。非常感谢各位的支持!RAPIDS团队将继续推动端对端数据科学加快发展,达到新高度。
在人工智能(AI)的黄金时代,我们见证了技术的边界不断扩展,模型的能力日益增强。今天,我要介绍的主角是Qwen2-0.5B模型,千问最新的大语言模型,以及如何在腾讯云云服务器上部署和使用它,开启AI应用的新旅程。
“产品使用攻略”、“上云技术实践” 有奖征集啦~ 图片案例名称案例简介使用 Windows GPU 云服务器搭建深度学习环境介绍如何使用 Windows GPU 云服务器,通过云服务器控制台从零开始手动搭建基于 PyTorch 和 TensorFlow 的深度学习环境。使用 Docker 安装 TensorFlow 并设置 GPU/CPU 支持介绍如何使用 Docker 安装 TensorFlow,并在容器中下载及运行支持 GPU/CPU 的 TensorFlow 镜像。使用 GPU 云服务器训练 ViT
译者注:如果你对如何在公司产品中引入和运用深度学习模型有浓厚的兴趣,下文也许会给你带来一些帮助。
除了发现隐藏在大量数据中的有洞察力的趋势和模式之外,还有什么比这更有趣?能够轻松地与同事和其他业务团队共享并向他们解释!新的Cloudera 的机器学习( CML ) 1.2 ,我们非常高兴地宣布托管持久的基于Web的应用程序和使用Flash、仪表板和Shiny到共享分析结果及洞察力与企业利益相关者框架仪表盘的支持。跟随本文中的演示,立即开始使用CML的新分析应用程序功能获得更多乐趣。(注意:CDSW 1.7中也提供此功能)。
NVIDIA 深度学习培训中心 (DLI) 提供 AI 、加速计算和加速数据科学的应用开发实战培训。基于云端完全配置的 GPU 平台,开发者、数据科学家、研究人员和院校师生可以快速获取端到端应用开发经验和提升专业技能。 一般来说,NVIDIA DLI的课程都是收费的,今天Lady整理了一份他们的免费课程,先“薅”为敬! 点击阅读原文可以访问全部课程(包含收费课程) 基于 Jetson Nano 构建视频 AI 的端侧应用 学习目标 基于人工智能的视频理解可以开启洞察,无论是识别后院的猫,还是优化客户的购
用来训练?一个月使用期限,用来训练不太靠谱,好不容易把数据弄上来,一个月后我又要换卡;
作为一个Python开发,经常需要把各种pip lib安装到自己的电脑上,导致自己的电脑存储占用越来越多而且越来越卡。如果我们有一个物美价廉的远程开发平台,每个月还有1000分钟(2C4G)免费额度的远程开发平台,可以把lib都安装上去在上面进行开发工作,那不是美滋滋?Cloud Studio就应运而生啦。每个月1000分钟,换算成小时就是41个小时,非常够用了。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 GPU是一种专门的处理器,对于加速高度并行化的计算密集型工作负载效果非常明显,尤其是在深度学习领域。理想的情况是你将GPU和CPU结合起来用于数据工程和数据科学的工作负载。典型的机器学习工作流程涉及数据准备、模型训练、模型评分和模型拟合。你可以在工作流程的每个阶段使用现有的通用CPU,并可选择性的使用专用G
本项目可以方便地对模拟学习网络的培训进行训练和管理,并结合CARLA模拟器进行评估。目的是:
AI 时代,和我们前端开发结合最紧密的就是当下炒的非常火热的 Web AI 技术了。
一直以来都是在windows本地上运行脚本执行,对如何在Centos服务器上运行脚本一无所知。一直以为需要打开浏览器,看着页面才能运行,结果…趁着今天无事,研究了一下。
本文讲解了如何安装cuda、cudnn以及如何在服务器上创建并管理虚拟环境,我们只有学会这些基本的使用方法,才能进入深度学习环境,开始我们的学习与研究,所以这部分内容是基本而十分重要的。
创建一个新的Pycharm项目(如果你的代码在服务器上,你需要用一个新的纯Python项目同步服务器上的项目,那么进行这一步)
选自Uber 作者:Alex Sergeev、Mike Del Balso 机器之心编译 参与:李泽南、路雪 Horovod 是 Uber 开源的又一个深度学习工具,它的发展吸取了 Facebook「一小时训练 ImageNet 论文」与百度 Ring Allreduce 的优点,可为用户实现分布式训练提供帮助。本文将简要介绍这一框架的特性。 近年来,深度学习引领了图像处理、语音识别和预测等方面的巨大进步。在 Uber,我们将深度学习应用到了公司业务中,从自动驾驶搜索路线到防御欺诈,深度学习让我们的数据科
Beam 是一个函数即服务平台,允许开发人员快速在云上运行他们的 AI 应用程序。用户主要在我们的平台上运行 AI 和数据工作负载,我们目前在我们的 Python SDK 中暴露了两种自动缩放策略。
选自pyimagesearch 作者:Adrian Rosebrock 机器之心编译 参与:Jane W、黄小天 本文介绍了如何使用 Keras、Redis、Flask 和 Apache 将自己的深度学习模型迁移到生产环境。文中的大多数工具可以互换,比如 Keras 可替换成 TensorFlow 或 PyTorch,Django 可代替 Flask,Nginx 可代替 Apache。作者唯一不推荐替换的工具是 Redis。同时本文还对深度学习 REST API 进行了压力测试,这种方法可以轻松扩展到添加的
1. TensorFlow 手册中文译版 手册源自谷歌官方英文版,在开源社区诸多热心用户的鼎力支持下翻译完成,覆盖了 TensorFlow 从下载到安装的完整过程,另外还介绍了 MNIST机器学习入
pip 是 Python 的包管理工具,用于安装和管理 Python 库。在终端中运行以下命令来安装 pip:
选自Tensorflow 机器之心编译 参与:黄玉胜、黄小天 这个文档和附带的脚本详细介绍了如何构建针对各种系统和网络拓扑的高性能可拓展模型。这个技术在本文档中用了一些低级的 Tensorflow Python 基元。在未来,这些技术将被并入高级 API。 输入管道 性能指南阐述了如何诊断输入管道可能存在的问题及其最佳解决方法。在使用大量输入和每秒更高的采样处理中我们发现 tf.FIFOQueue 和 tf.train.queue_runner 无法使用当前多个 GPU 生成饱和,例如在使用 AlexNet
在芯片性能提升有限的今天,分布式训练成为了应对超大规模数据集和模型的主要方法。本文将向你介绍流行深度学习框架 PyTorch 最新版本( v1.5)的分布式数据并行包的设计、实现和评估。
AI 前线导读: 近日,字节跳动人工智能实验室宣布开源一款高性能分布式深度学习训练框架 BytePS,在性能上颠覆了过去几年 allreduce 流派一直占据上风的局面,超出目前其他所有分布式训练框架一倍以上的性能,且同时能够支持 Tensorflow、PyTorch、MXNet 等开源库。
config = tf.ConfigProto(allow_soft_placement=True)
tensorflow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。tensorflow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备,比如CPU在tensorflow中的名称为/cpu:0。在默认情况下,即使机器有多CPU,tensorflow也不会区分它们,所有CPU都使用/cpu:0作为名称。而一台机器上不同为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
选自GitHub 作者:Wayde Gilliam 机器之心编译 本文作者详细描述了自己组装深度学习服务器的过程,从 CPU、GPU、主板、电源、机箱等的选取到部件的安装,再到服务器的设置,可谓面面俱
腾讯云比阿里云的GPU服务器更多一些,在阿里云上有时会出现没有GPU服务器或者售罄。
简介:刘欣,Meteorix,毕业于华中科技大学,前网易游戏技术总监,现任香侬科技算法架构负责人。之前专注游戏引擎工具架构和自动化领域,2018年在GDC和GoogleIO开源Airtest自动化框架,广泛应用于Unity3d/Cocos2dx游戏和网易、暴雪、SE等公司。目前负责香侬NLP领域工程化、算法平台架构。
因为这个名为RAPIDS的开源GPU加速平台出现,固有的数据工作,看起来将迎来变革。
大数据文摘作品 编译:姜范波、云舟 本文讲的是如何快速而不求完美地部署一个训练好的机器学习模型并应用到实际中。如果你已经成功地使用诸如Tensorflow或Caffe这样的框架训练好了一个机器学习模型,现在你正在试图让这个模型能够快速的演示,那么读这篇文章就对了。 阅读时长: 10-15分钟 使用前检查清单 检查tensorflow的安装 从 stdin 运行在线分类 在本地运行分类 把分类器放到硬编码(hardcoded)的代理 把分类器放到有服务发现(service discovery)的代理 用一
本文将全面介绍GPU云服务器的特点、优势及应用场景,并针对不同的使用需求,给出配置方案和详细的代码示例指导,包括:深度学习、高性能计算、3D渲染、区块链矿机、游戏直播等多种场景,旨在帮助用户深入理解GPU云服务器的功能,并快速上手应用。
有没有想到小夕今天会发文章呢?( ̄∇ ̄)有木有超级想小夕呢( ̄∇ ̄) 小夕在前面写了一堆纯理论和半理论的文章,不要怕,这次来一篇纯工程的tricks集合! 如果有人问小夕:"小夕,要是人工智能的就业岗位一夜之间消失了,你会去转行做什么呢?" 答曰:"当然是去做Linux运维啊23333" 小夕有一台自己负责的GPU服务器,她可让小夕操碎了心呐。最近好不容易把这娇气的小公举拉扯大了,下面就向各位服务器宝宝的爸爸妈妈们传授一下育女经验,让她早日成长为一个省心的深度学习服务器。 下面小夕将依次介绍: 操作系统建议
在 2016 年几个还不太知名的库引起了 Python 开发者的关注。在这篇博文中,我向大家揭示 这7 个 Python 类库,其中不包括像 Django,Flask 等已广为熟知的库,这些类库在 2017 年受到了众多开发者的关注,值得 Python 开发者参考和关注。 #1 Arrow 移动应用程序无处不在,而且全球人类都参与其中 – 无论是游戏,社交媒体,健康监控或其他。然而, Python 的标准数据/时间库的问题让它很难满足现代应用的需求,这些应用的目标受众生活在不同的地区和国家。Arrow
相关信息: VMware招聘机器学习和云原生开发工程师 VMware招聘内源开发工程师 VMware招聘应届生开发工程师 《Harbor权威指南》新书发布 1. 背景 ---- GPU作为一种加速器芯片,在机器学习,特别是深度学习中得到广泛的应用。但是,无论是企业、学校、医院或者政府单位,决定在人工智能领域进行投入时,领导却发现: 投入了100万,光买设备就花了80万,工程师还经常抱怨GPU资源不够用 当工程师雄心勃勃打算开始干活,却发现花了一个多星期,IT环境还没有搞好 究其原因,大致有以下三个:
选自 Nvidia Blog 作者:Aaron Markham、贾扬清 机器之心编译 昨天,Facebook 推出了 Caffe2,一个兼具表现力、速度和模块性的开源深度学习框架。它沿袭了大量的 Caffe 设计,可解决多年来在 Caffe 的使用和部署之中发现的瓶颈问题。最终,Caffe2 打开了算法实验和新产品的大门。通过在内部用于各种深度学习和增强现实任务,Caffe2 已经在 Facebook 对于规模和性能的需求上得到了锻造。同时,它为移动端应用提供了令人印象深刻的新功能,例如高级相机和即时通讯功
在深度学习和图形处理等领域,GPU相较于CPU有着数十倍到上百倍的算力,能够为企业提供更高的计算效率及更低廉的IT成本,但同时也有不少研究与开发人员对GPU云服务器有着不少困惑。 以深度学习为例,如何选购腾讯云GPU云服务器并优雅地安装驱动等底层开发工具库,以及如何实现远程开发和调试Python代码呢? 我们将从实践出发,提出基于腾讯云GPU实例的最佳实践,基于腾讯云GPU服务器打造远程Python/PyTorch开发环境。其实,开发者们完全可以在“本地开发一致的体验”和“服务器端更高质量资源”这二
在不断发展的大型语言模型(LLMs)领域中,用于支持这些模型的工具和技术正以与模型本身一样快的速度进步。在这篇文章中,我们将总结5种搭建开源大语言模型服务的方法,每种都附带详细的操作步骤,以及各自的优缺点。
TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。但在本文中只关心本地的设备。TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
作者:Wangda Tan、Sunil Govindan、Zhankun Tang
作为炼丹工程师,GPU毫无疑问会给我们训练模型带来极高的效率提升,但是一般实际开发都是本地编写然后复制代码到GPU机器上面运行,这样效率就会有一定的折损,而且同时维护两套环境可能还会偶尔会有报错。那么为什么我们不直接远程到GPU机器上直接进行开发呢?
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
领取专属 10元无门槛券
手把手带您无忧上云