首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python中的groupby分组

    写在前面:之前我对于groupby一直都小看了,而且感觉理解得不彻底,虽然在另外一篇文章中也提到groupby的用法,但是这篇文章想着重地分析一下,并能从自己的角度分析一下groupby这个好东西~...OUTLINE 根据表本身的某一列或多列内容进行分组聚合 通过字典或者Series进行分组 根据表本身的某一列或多列内容进行分组聚合 这个是groupby的最常见操作,根据某一列的内容分为不同的维度进行拆解...for i in df.groupby(['key1','key2']): print(i) # 输出: (('a', 'one'), data1 data2 key1 key2...另外一个我容易忽略的点就是,在groupby之后,可以接很多很有意思的函数,apply/transform/其他统计函数等等,都要用起来!...---- 彩蛋~ 意外发现这两种不同的语法格式在jupyter notebook上结果是一样的,但是形式有些微区别 df.groupby(['key1','key2'])[['data2']].mean

    2K30

    python中fillna_python – 使用groupby的Pandas fillna

    我尝试过使用groupby fillna() df[‘three’] = df.groupby([‘one’,’two’])[‘three’].fillna() 这给了我一个错误....我尝试了向前填充,这给了我相当奇怪的结果,它向前填充第2列.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...解决方法: 如果每组只有一个非NaN值,则每组使用ffill(向前填充)和bfill(向后填充),因此需要使用lambda: df[‘three’] = df.groupby([‘one’,’two’]...0 1 1 10.0 1 1 1 40.0 2 1 1 NaN 3 1 2 NaN 4 1 2 20.0 5 1 2 NaN 6 1 3 NaN 7 1 3 NaN df[‘three’] = df.groupby...two three 0 1 1 10.0 1 1 1 40.0 2 1 1 25.0 3 1 2 20.0 4 1 2 20.0 5 1 2 20.0 6 1 3 NaN 7 1 3 NaN 标签:python

    1.8K30

    Pandas分组与聚合1.分组 (groupby)一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy二、GroupBy对象支持迭代操作三、GroupBy对象可以转换成

    文章来源:Python数据分析 1.分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程...通过字典分组 示例代码: # 通过字典分组 mapping_dict = {'a':'Python', 'b':'Python', 'c':'Java', 'd':'C', 'e':'Java'} print...非NaN的个数 print(df_obj2.groupby(mapping_dict, axis=1).sum()) 运行结果: C 1 Java 2 Python 2...通过索引级别分组 示例代码: # 通过索引级别分组 columns = pd.MultiIndex.from_arrays([['Python', 'Java', 'Python', 'Java', '...: language Python Java Python Java Python index A A B C B 0 2

    23.9K51

    groupby函数详解

    pandas中groupby函数用法详解 1 groupby()核心用法 2 groupby()语法格式 3 groupby()参数说明 4 groupby()典型范例 5 groupby常见的调用函数...()的常见用法 函数 适用场景 备注 df.groupby(‘key1’) 一列聚合 分组键为列名(可以是字符串、数字或其他Python对象) df.groupby([‘key1’,‘key2’]) 多列聚合...分组键为列名,引入列表list[] df[‘data1’].groupby(df[‘key1’]).mean() 按某一列进行一重聚合求均值 分组键为Series A=df[‘订单编号’].groupby...(2)groupby(),根据分组键的不同,有以下4种聚合方法: 分组键为Series (a)使用原df的子列作为Series df.groupby([ df[‘key1’], df[‘key2’]...)).count() # 按照【生日】的【年份】分组 参考链接:pythongroupby函数主要的作用是进行数据的分组以及分组后地组内运算!

    3.7K11

    Pandas GroupBy 深度总结

    今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理。...我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息 不要再观望了,一起学起来吧 使用 Groupby 三个步骤 首先我们要知道,任何 groupby...对象中的组数,我们可以从中提取 ngroups 属性或调用 Python 标准库的 len 函数: print(grouped.ngroups) print(len(grouped)) Output...链是如何一步一步工作的 如何创建 GroupBy 对象 如何简要检查 GroupBy 对象 GroupBy 对象的属性 可应用于 GroupBy 对象的操作 如何按组计算汇总统计量以及可用于此目的的方法...如何一次将多个函数应用于 GroupBy 对象的一列或多列 如何将不同的聚合函数应用于 GroupBy 对象的不同列 如何以及为什么要转换原始 DataFrame 中的值 如何过滤 GroupBy 对象的组或每个组的特定行

    5.8K40
    领券