首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用FreeSurfer进行脑区分割

    FreeSurfer 是美国哈佛-麻省理工卫生科学与技术部和马萨诸塞州总医院共同开发的一款磁共振数据处理软件包,是基于 Linux 平台的全免费开源软件。FreeSurfer 能完成对高分辨率的 MRI 图像进行分割、配准及三维重建,其处理过程主要包含去头骨、B1 偏差场校正、体数据配准、灰白质分割、面数据配准等。FreeSurfer 可以方便地处理大脑 MRI 图像,并生成高精度的灰、白质分割面和灰质、脑脊液分割面,根据这两个表面可以计算任何位置的皮质厚度及其他面数据特征如皮质 外表面积、曲率、灰质体积等,这些参数可以映射到通过白质膨胀算法得到的大脑皮质表面上直观显示。另外,FreeSurfer 还具有特征的组间差异分析及结果的可视化功能。

    05

    CMRxMotion2022—— 呼吸运动下心脏MRI分析挑战赛

    CMR 成像质量易受呼吸运动伪影的影响。挑战赛目标是评估呼吸运动对 CMR 成像质量的影响,并检查自动分割模型在不同呼吸运动水平下的鲁棒性。心脏磁共振 (CMR) 成像是目前评估心脏结构和功能的金标准模式。基于机器学习的方法在以前的 CMR 挑战(例如 ACDC、M&Ms)中取得了显着的性能。然而,在临床实践中,模型性能受到不一致的成像环境(例如,供应商和协议)、人口变化(正常与病理病例)和意外的人类行为(例如,身体运动)的挑战。通过将训练有素的机器学习模型暴露于“压力测试”中的极端情况来调查潜在的故障模式很有用。迄今为止,模型通用性方面的现有挑战大都集中在供应商可变性和解剖结构变化上,而对人类行为的影响的探索较少。对于 CMR 采集,呼吸运动是主要问题之一。有急性症状的患者不能遵守屏气指令,导致图像质量下降和分析不准确。

    02

    µ-RegPro2023——前列腺 MR 超声配准挑战之传统非刚性配准方法

    术前和术中成像之间的多模态图像配准能够在许多手术和介入任务中融合临床重要信息。磁共振成像 (MR) 和经直肠超声 (TRUS) 图像的配准有助于精确对准前列腺和其他解剖结构,例如在引导前列腺活检期间作为定位相关解剖和潜在病理目标的标准,以及用于前列腺活检和局部治疗/干预计划的方法或决策支持,可以说已经将前列腺癌患者护理转变为侵入性更小、更局部化的诊断、监测和治疗途径。尽管在过去二十年中取得了巨大进步,但该应用程序仍然面临挑战。首先,来自大量患者队列的配对 MR 和 TRUS 数据并未在临床实践中常规存储,而且公开数据稀缺且质量低下。其次,在两张图像上注释解剖和病理标志(对于表示相应位置进行验证至关重要)需要来自泌尿学、放射学和病理学等多个学科的专家领域知识和经验。

    02

    CARE2024——真实世界医学图像的综合分析与计算之LAScarQS++

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01

    CARE2024——真实世界医学图像的综合分析与计算之WHS++

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01

    AD阶段分类论文阅读笔记

    -- Yosra Kazemi 阿尔茨海默氏病(AD)是一种不可逆转的渐进性神经障碍,会导致记忆和思维能力的丧失 该论文使用深度学习的方法成功地对AD病的五个阶段进行了分类:非病态健康控制(NC)、显著性记忆关注(SMC)、早期轻度认知损害 (EMCI)、晚期轻度认知损害(LMCI)和阿尔茨海默病(AD) 在进行分类之前,fMRI的数据经过严格的预处理以避免任何噪音;然后,利用AlexNet模型提取从低到高水平的特征并学习 阿尔茨海默病以不同的速率发展,每个个体可能在不同的时间经历不同的症状,在不同阶段的阿尔茨海默氏症中,类别间的差异很低。 阿尔茨海默病是痴呆的主要病因,不同类型的痴呆症包括:老年痴呆(AD)、路易体痴呆、额颞叶紊乱症和血管性痴呆 在阿尔茨海默病中,大脑细胞中某些蛋白质水平的变化会影响神经元在海马体区域的交流能力,因此阿尔茨海默氏症的早期症状是失忆 病人的大脑中有一些不正常的团块和缠结在一起的纤维束,它们分别被称为淀粉样斑块和神经纤维缠结。这些现在被认为是老年痴呆症的一些主要症状 研究人员认为AD病人在出现症状之前的20年或更多年以前,大脑就发生了变化 目前,对于AD的阶段没有很好的定义,一些专家为更好地理解疾病的进展使用了七阶段的模型

    01

    CARE2024——真实世界医学图像的综合分析与计算之LiQA

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01
    领券