首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python入门之数据处理——12种有用的Pandas技巧

Pandas,加上Scikit-learn提供了数据科学家所需的几乎全部的工具。本文旨在提供在Python中处理数据的12种方法。此外,我还分享了一些让你工作更便捷的技巧。...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...在这里,我们定义了一个简单可复用的函数,可以轻松地用于对任何变量的分箱。 ? ? # 11–编码名义变量 有时,我们会遇到必须修改名义变量的类别的情况。这可能是由于以下各种原因: 1....# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...数值类型的名义变量被视为数值 2. 带字符的数值变量(由于数据错误)被认为是分类变量。 所以手动定义变量类型是一个好主意。如果我们检查所有列的数据类型: ? ?

5K50

Pandas 秘籍:1~5

这导致有可能连续调用其他方法,这被称为方法链接。 序列和数据帧的索引组件是将 Pandas 与其他大多数数据分析库区分开的组件,并且是了解执行多少操作的关键。...在视觉上,Pandas 数据帧的输出显示(在 Jupyter 笔记本中)似乎只不过是由行和列组成的普通数据表。 隐藏在表面下方的是三个组成部分-您必须具备的索引,列和数据(也称为值)。...>>> a = set([1,2,3]) >>> a[0] TypeError: 'set' object does not support indexing 序列和数据帧对象可与大多数 Python...此错误主要是由于列名或索引名的错误输入。...在早期版本的 Pandas 中,可以使用另一个索引器.ix通过整数和标签位置选择数据。 尽管这在某些特定情况下很方便,但是它本质上是模棱两可的,并且使许多 Pandas 使用者感到困惑。.

37.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    可以搜索并查看哪些版本的 Python 可用于安装。 您可以验证环境中使用的是哪个版本的 Python,甚至可以为 Python 2.7 创建环境。 您还可以更新当前环境中的 Python 版本。...定义了涉及nan和inf的算法,但请注意,它可能无法满足您的需求。 定义了一些特殊函数,以帮助避免出现nan或inf时出现的问题。 例如,nansum 在忽略nan的同时计算可迭代对象的总和。...有几种创建数组的方法。 一种方法是使用数组函数,在此我们提供一个可迭代的对象或一个可迭代的对象列表,从中将生成一个数组。...Pandas 做什么? pandas 向 Python 引入了两个关键对象,序列和数据帧,后者可能是最有用的,但是 pandas 数据帧可以认为是绑定在一起的序列。...必须牢记的是,涉及数据帧的算法首先应用于数据帧的列,然后再应用于数据帧的行。 因此,数据帧中的列将与单个标量,具有与该列同名的索引的序列元素或其他涉及的数据帧中的列匹配。

    5.4K30

    精通 Pandas:1~5

    必须验证数据源,并将错误保持在最低限度。 根据 IBM 的估计,糟糕的数据质量每年给美国经济造成 3.1 万亿美元的损失。 例如,2008 年,医疗错误给美国造成了 195 亿美元的损失。...python-pandas 有时,先前的安装可能需要附加的依赖关系,尤其是在 Fedora 的情况下。...name属性在将序列对象组合到数据帧结构等任务中很有用。 使用标量值 对于标量数据,必须提供索引。 将为尽可能多的索引值重复该值。...默认行为是为未对齐的序列结构生成索引的并集。 这是可取的,因为信息可以保留而不是丢失。 在本书的下一章中,我们将处理 Pandas 中缺失的值。 数据帧 数据帧是一个二维标签数组。...数据帧创建 数据帧是 Pandas 中最常用的数据结构。

    19.2K10

    【Python基础】Python3十大经典错误及解决办法

    不论大家学习Python的目的是什么,总之,学习Python前期写出来的代码不报错就是极好的。下面,严小样儿为大家罗列出Python3十大经典错误及解决办法,供大家学习。  ...world')  解决方法:在Python语言中使用两个等号(==)作为判断两个运算量是否相等的关系运算符,而等号(=)是赋值运算符。  ...六、 IndexError 索引错误  当访问列表的索引超出列表范围时,就会出现索引错误。  ...列表的索引从0开始编号。  解决方法:通过len()函数获取列表的长度,然后判断要访问的索引是否超出列表范围。  ...第一种情况直接下载安装即可,在cmd中,pip install xxx;第二种情况电脑中可能存在多个版本的Python,建议保留一个常用的即可。

    2.1K30

    Pandas 数据分析技巧与诀窍

    Pandas是一个建立在NumPy之上的开源Python库。Pandas可能是Python中最流行的数据分析库。它允许你做快速分析,数据清洗和准备。...Pandas的一个惊人之处是,它可以很好地处理来自各种来源的数据,比如:Excel表格、CSV文件、SQL文件,甚至是网页。 在本文中,我将向您展示一些关于Pandas中使用的技巧。...它将分为以下几点: 1、在Pandas数据流中生成数据。 2、数据帧内的数据检索/操作。...2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。

    11.5K40

    Pandas 学习手册中文第二版:1~5

    即使从您创建的数据源或从组织内部获取数据,数据也通常是非常原始的。 原始数据意味着数据可能是杂乱无章的,可能是各种格式,而且是错误的; 相对于支持您的分析,它可能是不完整的,需要手动进行扩充。...建模过程是迭代的,在此过程中,您可以通过浏览数据来选择支持分析所需的变量,组织变量以供输入分析过程,执行模型并确定模型对原始假设的支持程度。...互联网上有许多免费且安全的共享站点,可让您创建或部署 Jupyter 笔记本进行共享。 关于迭代和敏捷的说明 关于数据操作,分析和科学的非常重要的一点是,它是一个迭代过程。...PyMC – 随机贝叶斯建模 PyMC 是一个 Python 模块,实现了贝叶斯统计模型和拟合算法,包括马尔可夫链蒙特卡洛。 它的灵活性和可扩展性使其适用于许多问题。...如果您遵循文本中的代码,并且输入中发生错误,或者输入其他语句,则编号可能会不正确(可以通过退出并重新启动 IPython 来重新设置编号)。 请纯粹将它们用作参考。

    8.3K10

    独家 | Pandas 2.0 数据科学家的游戏改变者(附链接)

    1.表现,速度以及记忆效率 正如我们所知,pandas是使用numpy建立的,并非有意设计为数据帧库的后端。因为这个原因,pandas的主要局限之一就是较大数据集的内存处理。...浏览 pyarrow 支持的数据类型和 numpy 数据类型之间的等效性实际上可能是一个很好的练习,以便您学习如何利用它们。 现在也可以在索引中保存更多的 numpy 数值类型。...对于数据流来说,没有什么比错误的排版更糟糕的了,尤其是在以数据为中心的 AI 范式中。...错误的排版直接影响数据准备决策,导致不同数据块之间的不兼容性,即使以静默方式传递,它们也可能损害某些输出无意义结果的操作。...同样,使用 pyarrow 引擎读取数据肯定更好,尽管创建数据配置文件在速度方面没有显著改变。 然而,差异可能取决于内存效率,为此我们必须进行不同的分析。

    44830

    解决TypeError: read_excel() got an unexpected keyword argument ‘parse_cols or ‘she

    这些错误消息通常是由于​​pandas​​版本更新导致的,某些参数已被弃用或更改。...upgrade pandas更新代码如果我们的​​pandas​​版本是最新的,但仍然遇到​​TypeError​​错误,那么我们需要检查我们的代码,并更改使用了被弃用参数的地方。...首先检查​​pandas​​的版本,如果不是最新的版本就升级,然后检查代码中使用了被弃用参数的地方,将它们替换为新的参数名。 通过以上步骤,我们可以成功解决这个错误,继续正常地处理Excel文件。...Pandas是一个强大且广泛使用的Python数据处理库。它提供了高性能、易于使用的数据结构和数据分析工具,使得数据清洗、转换、操作和分析变得更加简单和高效。...以下是Pandas库的一些主要特性:数据结构:Pandas提供了两种主要的数据结构,即​​Series​​和​​DataFrame​​。​​

    1.1K50

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...pip install --upgrade pandas==1.0.0rc0 当然,升级可能会破坏部分代码,因为这次发布的是主要版本,所以请务必小心。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    3.5K10

    读完本文,轻松玩转数据处理利器Pandas 1.0

    最新发布的 Pandas 版本包含许多优秀功能,如更好地自动汇总数据帧、更多输出格式、新的数据类型,甚至还有新的文档站点。...pip install --upgrade pandas==1.0.0rc0 当然,升级可能会破坏部分代码,因为这次发布的是主要版本,所以请务必小心。...新数据类型:布尔值和字符串 Pandas 1.0 还实验性地引入了新的数据类型:布尔值和字符串。 由于这些改变是实验性的,因此数据类型的 API 可能会有轻微的变动,所以用户在使用时务必谨慎操作。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    2.3K20

    Pandas数据应用:股票数据分析

    Pandas作为一个强大的Python库,在处理结构化数据方面表现出色,它为股票数据分析提供了便捷的方法。二、安装与导入在开始之前,请确保已经安装了pandas库。...C error: Expected 1 fields in line X, saw Y”,可能是由于CSV文件格式不正确或存在多余的逗号分隔符。...解决方案:检查CSV文件的格式,确保每行字段数量一致;或者使用参数error_bad_lines=False忽略错误行(适用于pandas较早版本),新版本可使用on_bad_lines='skip'。...())五、数据清洗实际中的股票数据可能存在缺失值、异常值等问题,需要进行清理。...六、数据可视化直观地展示数据趋势有助于发现潜在规律。Matplotlib和Seaborn是两个常用的绘图库,结合pandas可以轻松创建图表。

    25010

    Python探索性数据分析,这样才容易掌握

    Python探索性数据分析教程 介绍 每个数据科学家都必须掌握的最重要的技能之一是正确研究数据的能力。...坏消息是存在数据类型的错误,特别是每个数据帧中的“参与”列都是对象类型,这意味着它被认为是一个字符串。...看起来我们的罪魁祸首是数据中的一个 “x” 字符,很可能是在将数据输入到原始文件时输入错误造成的。要删除它,可以在 .apply() 方法中使用 .strip() 方法,如下所示: ? 太棒了!...为了合并数据而没有错误,我们需要对齐 “state” 列的索引,以便在数据帧之间保持一致。我们通过对每个数据集中的 “state” 列进行排序,然后从 0 开始重置索引值: ?...使用 Pandas 中的 pd.to_csv() 方法: ? 设置 index = False 保存没有索引值的数据。 是时候可视化呈现数据了!

    5K30

    Pandas数据应用:图像处理

    一、引言Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它并不是专门为图像处理设计的,但在某些情况下,我们可以利用 Pandas 的强大功能来辅助图像处理任务。...例如,原始图像数据可能是无符号整数类型(如 uint8),而 Pandas 默认创建的 DataFrame 列可能为浮点型或其他类型。这会导致后续操作出现错误。...避免措施: 确保输入数据的形状与预期一致。如果是多维数组,检查是否正确展平或重塑。..."TypeError: Cannot interpret '...' as a data type"这可能是由于传递给 DataFrame 构造函数的数据类型不符合要求。...避免措施: 明确指定数据类型,或者确保输入数据已经转换为合适的格式。

    9410

    针对SAS用户:Python数据分析库pandas

    Series 可以认为Series 是含标记的一维数组。这个结构包括用于定位数据键值的标签索引。Series 中的数据可以是任何数据类型。pandas数据类型的详情见这里。...SAS迭代DO loop 0 to 9结合ARRAY产生一个数组下标超出范围错误。 下面的SAS例子,DO循环用于迭代数组元素来定位目标元素。 SAS中数组主要用于迭代处理如变量。...数据值也可以从一系列非Python输入资源加载,包括.csv文件、DBMS表、网络API、甚至是SAS数据集(.sas7bdat)等等。具体细节讨论见第11章— pandas Readers。...可惜的是,对一个聚合函数使用Python None对象引发一个异常。 ? 为了减轻上述错误的发生,在下面的数组例子中使用np.nan(缺失数据指示符)。...另外,如果你发现自己想使用迭代处理来解决一个pandas操作(或Python),停下来,花一点时间做研究。可能方法或函数已经存在! 案例如下所示。

    12.1K20

    Pandas 2.2 中文官方教程和指南(十一·二)

    __getitem__(idx)可能是dfmi的视图或副本。 有时会在没有明显的链式索引的情况下出现SettingWithCopy警告。这些就是SettingWithCopy旨在捕捉的错误!...带有一个参数(调用系列或数据帧)并返回索引的有效输出(上述之一)的 callable 函数。 一个包含整数的元组,其元素是上述输入之一。 更多信息请参见通过标签进行选择。...当执行 Index.union() 时,对于具有不同数据类型的索引,索引必须转换为一个公共数据类型。通常情况下,虽然不是绝对的,这个数据类型是对象数据类型。...在具有不同数据类型的索引之间执行Index.union()时,索引必须转换为公共数据类型。通常情况下,尽管不总是如此,这是对象数据类型。唯一的例外是在整数和浮点数据之间执行联合时。...__getitem__(idx)可能是dfmi的视图或副本。 有时会在没有明显的链式索引的情况下出现SettingWithCopy警告。这些是SettingWithCopy旨在捕获的错误!

    25210
    领券