首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图形学的未来:投身业界、布料仿真大牛王华民谈实时模拟的前世今生

    机器之心专栏 作者:王华民(凌迪科技Style3D首席科学家兼凌迪研究院院长) 最近一段时间,数字人、元宇宙(metaverse)、云游戏等新概念变得异常炙手可热。很多圈外人士对此兴奋不已,觉得科幻电影中的场景马上就要实现了。可很少有人会指出,在通往虚拟未来的道路上其实还有一块绊脚石:实时物理模拟。本文为王华民教授结合自己的研究对实时物理模拟的一些看法。 不管是图形学圈内还是圈外,实时的重要性一直缺乏足够认识。 长期以来,圈内存在着一个误解:实时技术应该留给工业界开发。不少人觉得实时技术无非是把非实时技术

    01

    最高提速20亿倍!AI引爆物理模拟引擎革命

    新智元报道 来源:Reddit 编辑:David 【新智元导读】牛津大学一项研究表明,与传统物理求解器相比,机器学习模型可将物理模拟速度提升至最高20亿倍,距离解决困扰狄拉克的模拟计算难题可能向着成功更近了一步。 1929年,英国著名量子物理学家保罗·狄拉克曾说过,“大部分物理学和整个化学的数学理论所需的基本物理定律是完全已知的,困难只是这些定律的确切应用导致方程太复杂而无法解决”。狄拉克认为,所有物理现象都可以模拟到量子,从蛋白质折叠到材料失效和气候变化都是如此。唯一的问题是控制方程太复杂,无法在现实的时间尺度上得到解决。 这是否意味着我们永远无法实现实时的物理模拟?随着研究、软件和硬件技术的进步,实时模拟在经典极限下成为可能,这在视频游戏的物理模拟中最为明显。 对碰撞、变形、断裂和流体流动等物理现象进行需要大量的计算,但目前已经开发出可以在游戏中实时模拟此类现象的模型。当然,为了实现这一目标,需要对不同算法进行了大量简化和优化。其中最快的方法是刚体物理学。 为此假设,大多数游戏中的物理模型所基于的对象可以碰撞和反弹而不变形。物体由围绕物体的凸碰撞框表示,当两个物体发生碰撞时,系统实时检测碰撞并施加适当的力来加以模拟。此类表示中不发生变形或断裂。视频游戏“Teardown”可能是刚体物理学的巅峰之作。 Teardown 是一款完全交互式的基于体素的游戏,使用刚体物理解算器来模拟破坏 不过,刚体物理虽然有利于模拟不可变形的碰撞,但不适用于头发和衣服等可变形的材料。在这些场景中,需要应用柔体动力学。以下是4种按复杂性顺序模拟可变形对象的方法: 弹簧质量模型 顾名思义,这类对象由通过弹簧相互连接的质点系表示。可以将其视为 3D 设置中的一维胡克定律网络。该模型的主要缺点是,在设置质量弹簧网络时需要大量手动工作,且材料属性和模型参数之间没有严格的关系。尽管如此,该模型在“BeamNG.Drive”中得到了很好的实现,这是一种基于弹簧质量模型来模拟车辆变形的实时车辆模拟器。 BeamNG.Drive 使用弹簧质量模型来模拟车祸中的车辆变形 基于位置的动力学 (PBD):更适合柔体形变 模拟运动学的方法通常基于力的模型,在基于位置的动力学中,位置是通过求解涉及一组包含约束方程的准静态问题来直接计算的。PBD 速度更快,非常适合游戏、动画电影和视觉效果中的应用。游戏中头发和衣服的运动一般都是通过这个模型来模拟的。PBD 不仅限于可变形固体,还可以用于模拟刚体系统和流体。

    03

    Oracle 12c可插拔数据库深入理解

    Oracle 12c 中引入了一个新功能就是Oracle Multitenant,这个功能可以在多租户容器数据库中,创建并维护许多个可插拔数据库。Oracle Multitenant是Oracle企业版中需要额外付费的组件。然而,在所有Oracle版本中都可以在一个可插拔数据库中免费使用它。 多租户容器数据库(CDB)是指能够容纳一个或者多个可插拔数据库的数据库。容器是指CDB中的数据文件和元数据的集合。可插拔数据库是指可以通过克隆另一个数据库轻松创建的数据容器。如果有必要,也可将可插拔数据库从一个CDB传送到另一个CDB。 所有含有一组主数据文件和元数据的CDB都是根容器。每个CDB也会含有种子容器,它是用于创建其它可插拔数据库的模板。每个CDB都由一个根容器、一个种子容器和0个、1个或多个可插拔数据库构成。

    01

    论大数据时代下组织内的隐私信息保护管理体系建设

    大数据时代,人们在网络上留下的个人印记越 来越多,这给人们的生活带来极大便利的同时,也增加了用户 个人隐私信息泄露的风险。通过运用大数据技术对人们留在互 联网上的痕迹进行采集,挖掘,提炼与分析之后,每个人的精 准画像都被毫无保留地完整暴露在了网络世界中。别有用心的 人们会利用每个人的精准画像给用户定向推送垃圾短信,拨打 骚扰电话,进行网络诈骗,造成了一起又一起的网络安全事 件,严重危害社会。在这种背景下,个人隐私信息的保护就显 得至关重要,这就要求涉及个人隐私信息采集处理的组织加强 组织内的隐私信息保护管理体系建设。本文从组织内隐私保护 管理体系建设的意义,建设思路,产品的隐私保护设计流程, 隐私泄露常见风险及应对策略几个方面来论述。

    01

    Nat. Methods | 利用深度学习进行基于生物物理学和数据驱动的分子机制建模

    本文介绍由美国马萨诸塞州波士顿哈佛医学院系统生物学系系统药理学实验室的Mohammed AlQuraishi等人发表于Nature Methods 的研究成果:研究人员报道了可微程序与分子和细胞生物学结合产生的新兴门类:“可微生物学”。本文作者介绍了可微生物学的一些概念并作了两个案例说明,展示了如何将可微生物学应用于整合跨生物实验中产生的多模态数据,解决这一存在已久的问题将促进生物物理和功能基因组学等领域的发展。作者讨论了结合生物和化学知识的ML模型如何克服稀疏的、不完整的、有噪声的实验数据造成的限制。最后,作者总结了它面临的挑战以及它可能扩展的新领域,可微编程仍有很多可发挥的空间,它将继续影响科技的发展。

    02

    Alphafold 3 这么牛,如何使用,一文 get! | MedChemExpress(MCE)

    Alphafold 3,一种新的革命性的人工智能 (AI) 模型,将以前所未有的准确性预测包含更广泛的生物分子,包括配体、离子、核酸和修饰残基的复合物的结构。与现有预测方法相比,Alphafold3 预测蛋白与其他生物分子相互作用的准确性有至少 50% 的提升,对于某些重要的相互作用类别,预测准确度甚至翻了一番。Alphafold3 架构Alphafold3 是通过对 AlphaFold 2 架构和训练过程的重大演进实现的,既适应更一般的化学结构,又提高了学习数据的效率。该系统通过用更简单的 Pairformer 模块替换 AlphaFold 2 的 Evoformer 来减少多序列比对(MSA)处理的数量。此外,它通过使用扩散模块直接预测原子坐标,取代了 AlphaFold 2 中作用于氨基酸特定框架和侧链扭转角的结构模块。扩散过程的多尺度性质(低噪声水平促使网络改善局部结构)还使我们能够消除立体化学损失,并且在网络中大部分特殊处理键合模式,轻松适应任意化学组分。

    01
    领券