你是不是曾经有这样的苦恼,python 真的太好用了,但是它真的好慢啊(哭死) ; C++ 很快,但是真的好难写啊,此生能不碰它就不碰它。老天啊,有没有什么两全其美的办法呢?俗话说的好:办法总是比困难多,大家都有这个问题,自然也就有大佬来试着解决这个问题,这就请出我们今天的主角: numba
shapely是基于笛卡尔坐标的几何对象操作和分析Python库,底层基于GEOS和JTS库。
在计算机图形学中,多边形裁剪是一个常用的技术,用于确定多边形与给定裁剪窗口之间的交集。通过裁剪,我们可以剔除不在裁剪窗口范围内的部分,从而减少图形处理的计算量,并加速渲染过程。 Python提供了各种库和算法来实现多边形裁剪。在本篇文章中,我们将使用shapely库来进行多边形的裁剪操作。shapely是一个Python库,提供了一些用于处理几何图形数据的功能。
注意第6行到第8行,就是我们已经熟悉的绘制正方形的程序——前面使用过的,放到了这里,但是,注意第6行,相对函数左侧要有四个空格的缩进,后面各行依次缩进。这样,用缩进的方式就表示第6行到第8行,是当前函数polygon的代码块,只有在调用这个函数的时候,这部分代码才被执行。
没事玩玩文字识别(Optical Character Recognition,OCR),发现有很多开源的可以使用,诸如easyOCR,cnocr,mmocr ,paddleocr,tesseract等。网上也有相应的demo和比较,还比较全。但是腾讯的OCR也是蛮牛,网上使用和介绍的挺少,所以本文就略微研究学习下。腾讯的OCR是基于腾讯优图实验室的深度学习技术,将图片上的文字内容,智能识别成为可编辑的文本。详情可以参见https://cloud.tencent.com/document/product/866
它继承pandas.Series和pandas.Dataframe,实现了GeoSeries和GeoDataFrame类,使得其操纵和分析平面几何对象非常方便。
报错原因是由于Fiona库在写入shapefile文件时,遇到了无法转换为ISO-8859-1编码的字符。Shapefile的标准不支持UTF-8编码,因此在处理包含非ISO-8859-1字符(例如中文)的字段时,可能会出现问题。 下面介绍两种方法
github:https://github.com/Toblerity/Shapely
cnmaps经过很多小伙伴的反馈和协作开发,目前更新了一个小版本到1.1。增加了一些新的功能,同时做了一些优化,下面我们快速看一下都有哪些变化。
是不是感觉被封面图和不明觉厉的题目给骗进来了哈哈哈,今天这篇是理论篇,没有多少案例,而且还很长,所以静不下心的小伙伴儿可以先收藏着,时间充裕了再看。 ---- 当今互联网和大数据发展的如此迅猛,大量的运营与业务数据需要通过可视化呈现来给商业分析人员提供有价值的决策信息,而地理信息与空间数据可视化则是可视化分析中至关重要而且门槛较高的一类。 通常除了少数本身具备强大前端开发能力的大厂之外,很多中小型企业在内部预算资源有限的情况下,并不具备自建BI和完整可视化框架的能力。需要借助第三方提供的开源可视化平台或者
使用Python中的Shapely模块可轻松地进行Skew IOU Computation:
接着上一篇的地图系列相关知识,本篇给大家介绍一种局部空间分析的地理围栏运算,具体场景主要用在分析局部的商圈、商场、街道、步行街内部相关变量方面。
WPF控件是Windows Presentation Foundation(WPF)中的基本用户界面元素。它们是可视化对象,可以用来创建各种用户界面。WPF控件可以分为两类:原生控件和自定义控件。
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库。
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流。本系列文章就将围绕geopandas及其使用过程中涉及到的其他包进行系统性的介绍说明,每一篇将尽可能全面具体地介绍geopandas对应方面的知识,计划涵盖geopandas的数据结构、投影坐标系管理、文件IO、基础地图制作、集合操作、空间连接与聚合。 作为基于geopandas的空间数据分析系列文章的第一篇,通过本文你将会学习到geopandas中的数据结构。 geopandas的安装和使用需要若干依赖包,如果不事先妥善安装好这些依赖包而直接使用pip install geopandas或conda install geopandas可能会引发依赖包相关错误导致安装失败,官方文档中的推荐安装方式为:
在上一篇文章《用Python画一个中国地图》中,我们简单描述了一下如何用Python快速画出一个中国地图的轮廓,似乎没有什么实用价值,这一次我们用实际数据填充它,使它看上去更有意义。
我们知道Python作为一个程序语言,讲究的是严谨和逻辑;而艺术画似乎处于另一个维度,更多是无规则和随心所欲。然而我们却可以找到两者的交汇点。今天我们将学习如何用Python制作艺术图。一旦我们知道如何用Python做基础,我们就可以免费获得Python工具库的其他部分(web框架、数据科学工具、AI+ML+CV工具等)。可以想象,拥有这些工具的我们其实没有天花板。
上个月瑞幸咖啡的酱香拿铁火出圈,让瑞幸再一次出现在聚光灯下,上一次还是财务造假的时候。
入手pyqt没有几天,想把pyqt系类基础挨个实践一遍。 这一节是pyqt5的QPainter绘制基础图形。 开发环境:
数字化妆 数字化妆,使用face_recognition实现. 环境 Windows 10 face_recognition 1.2.2 环境安装 face_recognition安装 使用命令: pip3 install face_recognition 此项,安装需要很长时间。 效果预览 完整代码 #coding=utf-8 #数字化妆类 import face_recognition from PIL import Image, ImageDraw #加载图片到numpy array i
来源为华中科技大学白翔老师。import numpy as np import shapelyfrom shapely.geometry import Polygon,MultiPoint #多边形 line1=[2,0,2,2,0,0,0,2] #四边形四个点坐标的一维数组表示,[x,y,x,y....]a=np.array(line1).reshape(4, 2) #四边形二维坐标表示poly1 = Polygon(a).convex_hull #python四边形对象,会自动计算四个点,最
最近使用过深度学习图片标注工具 labelme,发现其中有个 “Create AI-Polygon” 功能,也就是创建 AI 多边形,发现好像网络上基本没有相关介绍的文章,所以我打算来抛砖引玉一下。
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测。
环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14) 3. 安装 git 、cmake 、 python-pip 1234567891011121314151617181920212223 # 安装 git$ sudo apt-get install -y git# 安装 cmake$ sudo apt-get install
在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法:
Python语言呢,现在应用和使用都很广泛,大家即使没有用过,可能也见过它的广告(可真是广告满天飞啊)。
本文要点在于Python扩展库pyopengl的应用,关于OpenGL函数参数含义可以查阅有关资料。 import sys from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * class MyPyOpenGLTest: def __init__(self, width = 640, height = 480, title = b'OpenGL--gradient color'): glutI
人脸识别很难吗? -- Kangvcar 本文导航 ◈ 环境要求00% ◈ 环境搭建03% ◈ 实现人脸识别19% ◈ 示例一(1 行命令实现人脸识别):19% ◈ 示例二(识别图片中的所有人脸并显示
环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14) 3. 安装 git 、cmake 、 python-pip # 安装 git $ sudo apt-get install -y git # 安装 cmake $ sudo apt-get install -y cmake # 安装 python-pip $ sudo apt-
先来聊聊为什么做数据分析一定要用Python或R语言。编程语言这么多种,Java, PHP都很成熟,但是为什么在最近热火的数据分析领域,很多人选择用Python语言?
我们现在有一个WKT格式的要素,我想看一下这个要素到底是什么形状,有没有什么方便的方法呢?
POI(Pointof Interest,兴趣点)就是电子地图上的各种设施点位等。可以用来做很多事情,比如项目前期分析中的周边公服设施分布(最低端用法)。很多电子地图下载器都提供POI数据下载,但是一般都要收费,我就想问,凭什么!!!电子地图的这些数据都是开放的,凭什么你要收我钱!!!
Polygon马蹄链动物主题铭文$ANTS总量2100w张,当前还剩余76%,成本很低0.003MATIC一张,可以打了防身。
本文为《通过深度学习了解建筑年代和风格》论文复现的第三部分——获取阿姆斯特丹高质量街景图像的上篇,主要讲了如何获取利用谷歌街景地图自动化获取用于深度学习的阿姆斯特丹的高质量街景图像,此数据集将用于进行建筑年代的模型训练[1]。
编译:佘彦遥 程序注释:席雄芬 校对:丁雪 原文链接:https://github.com/python-visualization/folium/blob/master/README.rst Folium是建立在Python生态系统的数据整理(Datawrangling)能力和Leaflet.js库的映射能力之上的开源库。用Python处理数据,然后用Folium将它在Leaflet地图上进行可视化。 概念 Folium能够将通过Python处理后的数据轻松地在交互式的Leaflet地图上进行可视化展示
Python基于其强大的功能越来越成为了科学利器,气象上对精细化的要求越来越高,对于底图的制作也越来越高。本人气象出身,长期用NCL画图,但是NCL对于精细化底图的支持很差(或者说因为本人不是地图学专业不明白shp文件),也不愿意学Arcgis,于是和同事小陈折腾了一系列的在Python下地图的操作。
在 Python 图形化界面开发中,添加图形和图像可以使你的应用程序更具吸引力和可交互性。本篇博客将介绍如何在 Tkinter 中添加图形元素、绘制基本图形以及显示图像。我们将详细讨论这些概念,并提供示例代码以帮助你更好地理解。
上一篇的推文我们使用geopandas+plotnine 完美绘制高斯核密度插值的空间可视化结果,并提供了一个简单高效的裁剪方法,具体内容点击链接:Python-plotnine 核密度空间插值可视化绘制Python-plotnine 核密度空间插值可视化绘制。
八、显示文字 用create_text在画布上写字。这个函数只需要两个坐标(文字x和y的位置),还有一个具名参数来接受要显示的文字。例如: >>> from tkinter import* >>> t
平移和缩放地图以选择感兴趣的区域。使用绘图工具在地图上绘制多边形研究区域,然后在地图绘制点用来标记研究区域的起点,如果没绘制点则选取研究区域的中心点作为起点。
大约十年前,我瞥见了第一辆自动驾驶汽车,当时Google仍在对初代无人车进行测试,而我立刻被这个想法吸引了。诚然,在将这些概念开源给社区之前,我必须等待一段时间,但是这些等待是值得的。
XML 指可扩展标记语言(eXtensible Markup Language),常被设计用来传输和存储数据。 在进行医学图像标注时,我们常使用XML格式文件来存储标注,以下展示了使用Python来提取标注的坐标值。
今天给大家介绍一个世界上最简洁的人脸识别库 face_recognition,你可以使用 Python 和命令行工具进行提取、识别、操作人脸。
在使用EAS SANP软件进行影像数据裁剪的时候,遇到了程序报错,通过观察报错信息无法定位错误原因,如下图。
最近有段视频很火,《CCTV重磅新闻:美国超级间谍潜入中国!就在你身边》!描述了借助iPhone手机的定位功能,记录了您的所有行踪。
领取专属 10元无门槛券
手把手带您无忧上云