首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ucinet网络分析实例(网络分析app)

    UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET提供了从简单统计到拟合p1模型在内的多种统计程序。

    02

    X-Windows桌面

    提到X-Windows桌面,人们最先想到的一般都是KDE和GNOME。目前大多数的Linux发行版上的桌面环境都采用了这两个东西。确实,KDE和GNOME做得很好,界面美观、使用方便,而且现在Bug越来越少,确实很适合日常应用。所以现在几乎每个使用Linux的人都知道KDE和GNOME,他们几乎统治了Linux桌面。但实际上除了这两者外,尚存在许多其他桌面环境,如X-Face,FVWM等等。器重FVWM是一个老牌的,长久不衰的窗口管理器,它永远以一个忠实的 Xwindow 窗口管理器的方式工作。大家可以从网络上查找它的相关资料,很多很多。 我目前采用的桌面环境是FVWM+Thunar文件管理,很简单,但是速度极快,而且稳定性极佳。

    02

    Science Advances:社会和健康科学中用于描述、预测和因果推理的机器学习方法

    社会和健康科学中使用的机器学习(ML)方法需要符合描述、预测或因果推理等预期研究目的。本文通过结合这些学科的统计分析的必要要求,为社会和健康科学中的研究问题与适当的ML方法进行了全面、系统的元映射。作者将已建立的分类映射到描述、预测、反事实预测和因果结构学习,以实现共同的研究目标,如估计不良社会或健康结果的流行率、预测事件的风险、识别不良结果的风险因素或原因,并解释通用的ML性能指标。这种映射可能有助于充分利用ML的好处,同时考虑与社会和健康科学相关的特定领域方面,并希望有助于加速ML应用的普及,以推进基础和应用社会和健康科学研究。

    03
    领券