高等数学是很多理工类专业必修的课程之一,一般要求都在大一期间完成。而高等数学中最为精彩的部分就是微积分,同时微积分是现代工程技术的基础,也是后续从事科学研究的根基。微积分主要包含两个部分:微分和积分。但是高等数学对于很多大学生来说都是异常的枯燥,能不能让微积分变得有趣起来呢?是不是可以通过编程的方式来进行复杂微积分的计算呢?本文将为大家介绍利用python来实现微积分的计算,让微积分的学习不再枯燥。
在python中,可以使用SymPy库来求解微积分问题,import引入sympy库后,定义符号变量,定义被积函数,求解定积分,输出结果。
hello,大家好,我是一点,专注于Python编程,如果你也对感Python感兴趣,欢迎关注交流。
这段时间,一直利用晚上的空余时间在学习微积分,想将研究微积分作为自己的一项业余爱好,就好比研究Excel一样,奇怪吧!我自己也觉得很奇怪,但自己就是这样,奇怪的爱好,一个奇怪的人!
编者按:2012年10月《哈佛商业周刊》上面发表了一篇专栏,文章称“数据科学家”是21世纪最最性感的工作。在美国,数据科学家的年收入已超过律师和医生,无怪乎有人惊呼“告诉你的孩子不要成为医生而要成为数
来源:专知本文为书籍介绍,建议阅读6分钟本书指导您学习微积分、概率、线性代数和统计学等领域以及应用。 掌握数据科学、机器学习和统计学方面的数学知识。在这本书中,作者Thomas Nield将指导您学习微积分、概率、线性代数和统计学等领域,以及如何将它们应用到线性回归、逻辑回归和神经网络等技术中。在此过程中,您还将获得关于数据科学状态的实际见解,以及如何利用这些见解来最大化您的职业生涯。 https://www.oreilly.com/library/view/essential-math-for/9781
说起数学计算器,我们常见的是加减乘除四则运算,有了它,我们就可以摆脱笔算和心算的痛苦。四位数以上的加减乘除在数学的原理上其实并不难,但是如果不借助于计算器,光依赖我们的运算能力(笔算和心算),不仅运算的准确度大打折扣,而且还会让我们对数学的运用停留在一个非常浅的层次。
可汗学院,是由孟加拉裔美国人萨尔曼·可汗创立的一家教育性非营利组织,主旨在于利用网络影片进行免费授课。
深度学习是机器学习领域中的一个分支,主要研究如何使用神经网络等深度结构来解决复杂的模式识别和决策问题。深度学习已经在图像识别、语音识别、自然语言处理等领域取得了很多成功的应用,也成为了人工智能研究的重要方向之一。
机器之心报道 机器之心编辑部 花了七年时间填坑,《机器学习数学》的书稿终于和读者们见面了。 说到《Python 机器学习》,AI 领域的研究者都不会感到陌生。这本书可以说是近十年来最畅销的机器学习书籍之一,也是其作者 Sebastian Raschka 最具代表性的作品。 Sebastian Raschka 《Python 机器学习》在 2015 年出版,一举成为 Packt 和亚马逊网站上的畅销书,在 2016 年获得 ACM 最佳计算奖,并被翻译成多种语言出版。书籍的第二版和第三版也分别于 2017
这份指南是为了那些对机器学习感兴趣,但不知如何开始的朋友们准备的。我想大多厌倦在网上搜索大量资料的人都会有挫败感,也放弃了有人能指引他们如何入门的希望。
说到《Python 机器学习》,AI 领域的研究者都不会感到陌生。这本书可以说是近十年来最畅销的机器学习书籍之一,也是其作者 Sebastian Raschka 最具代表性的作品。
新智元编译 来源:medium等 编译:小七 【新智元导读】春节必看十大机器学习热门文章排行榜。本榜单中涉及的主题包括:谷歌大脑、AlphaGo、生成维基百科、矩阵微积分、全局优化算法、Tenso
專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目管理:PMO,变革,生产转移,清算和资产处理。MBA, PMI-PBA, PMP。❈ 我在学习机器学习算法和玩Kaggle 比赛时候,不断地发现需要重新回顾概率、统计、矩阵、微积分等知识。如果按照机器学习的标准衡量自我水平,这些知识都需要重新梳理一遍。 网上或许有各种各样知识片断,却较难找到一本书将概率,统计、矩阵、微
在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那正是在这里。——恩格斯
本为为 AI 研习社用户孙启超发表在社区上的博文,原文链接为: https://club.leiphone.com/page/blogDetail/8087 看了Siraj Raval的3个月学习机器
今天我深入研究了逻辑回归到底是什么,以及它背后的数学是什么。学习了如何计算代价函数,以及如何使用梯度下降法来将代价函数降低到最小。 由于时间关系,我将隔天发布信息图。如果有人在机器学习领域有一定经验,并愿意帮我编写代码文档,也了解github的Markdown语法,请在领英联系我。
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
今天,我很自豪地宣布:免费交互式课程《微积分入门》 在Wolfram U正式上线了!(课程网址:https://www.wolfram.com/wolfram-u/introduction-to-calculus/)本课程旨在全面介绍微积分的基本概念,如极限,导数和积分等。 它包括38个视频课程以及交互式笔记本,笔记本中的范例由 Wolfram云提供。 这是Wolfram U开设的第二门完全交互式免费在线课程,由我们的Wolfram云和笔记本技术提供支持。
机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。 机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。 机器学习 这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。 神经网络架
机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。
文章目录 一、初等数学缺陷 二、微分与积分 三、学习数学分析的目的 四、数学分析与高等数学对比 一、初等数学缺陷 ---- 初等数学的缺陷 : 计算图形的面积 , 只能计算直线 , 曲线构成的图形面积 , 不规则曲线图形面积无法计算 ; 计算空间不规则物体的体积 , 无法计算 ; 物理学中的 匀速运动 , 匀加速运动 可计算 , 但是不规则的变速运动 , 无法计算 ; \ \ \ \ \vdots 微积分 的发现 , 解决了上述问题 ; 初等数学 是研究 常量 的数学 , 高等数学 是研究 变量 的数学 ;
机器学习如何入门?大家应该也看过很多路线图了,今天向大家介绍towardsdatascience上一个博主推荐的机器学习入门步骤和课程,看看国外的小伙伴是怎么学习的。
Same with linear algebra, calculus is also closely related to programming.
链接:oschina.net/news/78629/beginners-how-to-learn-from-zero-artificial-intelligence 此文是想要进入人工智能这个领域、但
今天我们再进入下一个领域——以极限为基础的微积分,看看在这个领域,到底什么才是基本定理。
AI 科技评论按:这里是,油管 Artificial Intelligence Education 专栏,原作者 Siraj Raval 授权雷锋字幕组编译。 原标题 Learn Machine Le
分数阶微积分研究将导数和积分扩展到此类分数阶,以及求解涉及这些分数阶导数和积分的微分方程的方法。该分支在流体动力学、控制理论、信号处理等领域越来越流行。我们也意识到这个主题的重要性和其潜力,因此在最近发布的 Wolfram 语言 13.1 版本中增加了对分数阶微分和积分的支持。
雷刚 发自 凹非寺 量子位 报道 | 公众号 QbitAI 今天是开学第一天!心里只有学习的量子位,发现Hacker News上又有高分话题,而且还跟学习有关! 这次讨论的主题是: 想搞机器学习/A
导读:如何通过免费方式学习数据科学?数据科学家 Rebecca Vickery 从技术能力、理论和实践经验三个方面入手介绍了自己的经验。
个人主页--> https://xiaosongshine.github.io/
本文为《机器学习数学基础》补充资料,《机器学习数学基础》一书预计2021年6月份由电子工业出版社出版。
来自:开源中国社区 链接:http://www.oschina.net/news/78629/beginners-how-to-learn-from-zero-artificial-intelligence(点击尾部阅读原文前往) 原文:https://medium.com/digitalmind/artificial-intelligence-resources-f4efeac949b4#.ndykohymp 此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。 一、机器学习 有
莱布尼茨开创了数理逻辑,提出了计算之梦,乔治·布尔则在此基础上完成了逻辑的算术化,在计算领域迈出了坚实的一步。
早在2018年和2019年,SIGAI微信公众号先后发布过“机器学习算法地图”,“深度学习算法地图”,对机器学习、深度学习的知识脉络进行了梳理与总结,帮助大家建立整体的知识结构。这两张知识结构图的纸质版发行量和电子版下载量已经超过10万,有不少高校的机器学习课程还特地讲到了这两张图。在今天这篇文章里,我们将对机器学习的数学知识进行总结,画出类似的结构图。由于数学知识体系太过庞大,因此我们分成了整体知识结构图,以及每门课的知识结构图。
大三的时候学过一门“人工智能导论”的课,只记得课里有一些回溯和图搜索的算法,具体细节全忘了。
公理体系的例子,想说明人类抽象的另外一个方向:语言抽象(结构抽象已经在介绍伽罗华群论时介绍过)。 为了让非数学专业的人能够看下去,采用了大量描述性语言,所以严谨是谈不上的,只能算瞎扯。 现代数学基础有三大分支:分析,代数和几何。这篇帖子以尽量通俗的白话介绍数学分析。数学分析是现代数学的第一座高峰。 最后为了说明在数学中,证明解的存在性比如何计算解本身要重要得多,用了两个理论经济学中著名的存在性定理(阿罗的一般均衡存在性定理和阿罗的公平不可能存在定理)为例子来说明数学家认识世界和理解问题的思维方式,以及存在性的重要性:阿罗的一般均衡存在性,奠定了整个微观经济学的逻辑基础--微观经济学因此成为科学而不是幻想或民科;阿罗的公平不可能存在定理,摧毁了西方经济学界上百年努力发展,并是整个应用经济学三大支柱之一的福利经济学的逻辑基础,使其一切理论成果和政策结论成为泡影。
为了后面要讲的路径追踪,需要讲一下这个蒙特卡洛积分,同时需要回顾一下高等数学中的微积分和概率论与统计学的知识
该调查由 Python 软件基金会与 JetBrains 一起发起,有来自 150 多个国家的超过两万名开发人员参与。
Claude 3 推出之后,风头正劲。其中的「超大杯」Opus 号称可以在各项指标上碾压 GPT-4。这不,最近有一篇关于 Claude 3 在各个科学领域应用的文章我的朋友圈里刷屏了。文章提到了 Claude 3 在材料学、物理学和数学等领域研究的应用,让人感到非常振奋。仿佛有了这款新的大语言模型,科研工作都可以交给它来完成。这篇文章引起了广泛关注,但也有不少人持怀疑态度。由于我对材料学了解不多,我也把文章分享到朋友圈,想听听大家的意见。
虽然网络上已经有不少关于多元微积分和线性代数的在线资料,但它们通常都被视作两门独立的课程,资料相对孤立,也相对晦涩。
机器学习理论是一个涵盖统计、概率、计算机科学和算法方面的领域,该理论的初衷是以迭代方式从数据中学习,找到可用于构建智能应用程序的隐藏洞察。
机器学习在很多眼里就是香饽饽,因为机器学习相关的岗位在当前市场待遇不错,但同时机器学习在很多人面前又是一座大山,因为发现它太难学了。在这里我分享下我个人入门机器学习的经历,希望能对大家能有所帮助。
SymPy是一个用于符号数学计算的Python库。与传统的数值计算库不同,SymPy专注于处理符号表达式,使得用户能够进行符号计算、代数操作和解方程等任务。本教程将介绍SymPy库的基本概念、常见用法和高级功能,帮助读者更好地理解和使用SymPy。
微积分很实用,譬如流媒体中的音频重新采样和混音,就需要保证新样本是光滑的否则有噪音,基础就是微积分了(可导就是连续变化,连续变化就是光滑,二次可导就是变化的变化也是光滑,就是三次样条插值了)。 不过微积分老师的表达是不一样的,因为教育体制和目的不同。譬如,对于三角函数的导数和自然对数求导: 我们老师说:这个是一个有用的函数,非常重要,因为在考试时做题可以得3分。 而月亮国老师说:这个是一个有用的函数,非常重要,因为它们常在航海导航中使用,依靠它,船才能通过暗礁。 实际上都是丑陋的ln(u)求导而已~ 再来
领取专属 10元无门槛券
手把手带您无忧上云