首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

方差、协方差、标准差、均方差、均方根值、均方误差、均方根误差对比分析

方差、协方差、标准差(标准偏差/均方差)、均方误差、均方根误差(标准误差)、均方根值 本文由博主经过查阅网上资料整理总结后编写,如存在错误或不恰当之处请留言以便更正,内容仅供大家参考学习。...标准差(Standard Deviation) 标准差也被称为标准偏差,在中文环境中又常称均方差,是数据偏离均值的平方和平均后的方根,用σ表示。标准差是方差的算术平方根。...换句话说,是观测值与真值(或模拟值)偏差(而不是观测值与其平均值之间的偏差)的平方与观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替。...均方根值(root-mean-square,RMES) 均方根值也称作为方均根值或有效值,在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值。...在物理学中,我们常用均方根值来分析噪声。 比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。这是为什么呢?

7.1K11

R 语言线性回归应用:拟合 iOS 录音波形图

然而根据分贝公式推算出来的结果如下图所示,与步骤 1 不一致: 不一致的原因,可能是步骤 1 通过硬件 DSP 计算得到 mic 的分贝,与 2 通过公式计算 wav 分贝的算法不同。...我们要解决这样的问题:拟合一个公式,输入一段 wav 采样的均方根值 prmsp_{rms}p​rms​​,输出估算的分贝 Lp~\tilde{L_p}​L​p​​​~​​ ,使其近似等于 averagePowerForChannel...录音完成后,得到 wav 文件。 解析 wav 文件,计算每个 $$L_p$$ 对应时间段的 wave 的方均根(root mean square value),即 $$p_{rms}$$。...建立线性回归模型 考虑分贝计算公式 wiki 用 R 语言建立线性回归模型,拟合 formula = y ~ log(x) dat <- read.csv('data/input.csv') model...我们用 python 读取 wav,通过上述方程计算分贝波形图,不断调整参数,使拟合波形(左上图)更加接近目标(右上图)。 最终得到还原方程:

2.3K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    RMS,RMSE以及SD

    本次分享几个容易混淆的量,分别为: RMS:均方根值 RMSE: 均方根误差 Standard Deviation: 标准差 ---- 下面给出三个量的表达公式: 均方根值 X rms...− − − −  √ RMSE = \sqrt{\frac{\sum_{i=1}^{n} (X_{obs,i} - X_{model,i})^{2}}{n}} 公式理解: 它是观测值与真值偏差的平方和观测次数...n n比值的平方根,在实际测量中,观测次数n n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。...均方根误差,当对某一量进行甚多次的测量时,取这一测量列真误差的均方根差(真误差平方的算术平均值再开方),称为标准偏差,以σ \sigma表示。...,也称均方差(Mean Mean Square Square Error Error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ \sigma表示,标准差能反映一个数据集的离散程度

    2K10

    深度学习——各种优化器算法Optimizer详解

    缺点: 由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型。...鞍点就是:一个光滑函数的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。例如这个二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲,鞍点就是(0,0)。 ?...蓝色是 Momentum 的过程,会先计算当前的梯度,然后在更新后的累积梯度后会有一个大的跳跃。...这个分母相当于梯度的均方根 root mean squared (RMS),在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值 ,所以可以用 RMS 简写: ?...如果 mt 和 vt 被初始化为 0 向量,那它们就会向 0 偏置,所以做了偏差校正,通过计算偏差校正后的 mt 和 vt 来抵消这些偏差: ? 梯度更新规则: ?

    1.5K10

    数学建模常用模型02:插值与拟合

    拟合:已知有限个数据点,求近似函数,可不过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。...Polyfit是多项式拟合: 需要输入x,y的数据,x和y个数一致,然后polyfit(x,y,n)n表示需要拟合的次数。Polyval一般套用在polyfit后,用法看上图。...VI=interp3(V,n):作n次递归计算,在V的每两个元素之间插入它们的三维插值。这样,V的阶数将不断增加。interp3(V)等价于interp3(V,1)。 VI=interp3(......griddata 功能 数据格点 格式 (1)ZI = griddata(x,y,z,XI,YI) 用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。...griddata 将返回曲面z 在点(XI,YI)处的插值。曲面总是经过这些数据点(x,y,z)的。输入参量(XI,YI)通常是规则的格点(像用命令meshgrid 生成的一样)。

    1.3K00

    点云库PCL:概述

    三维扫描技术的迅速发展使得点云数据的获取更加简单方便,而点云驱动的计算机图形学在逆向工程、数字城市、文物保护、智能机器人、无人驾驶和人机交互等领域日益彰显其广阔的应用前景。...它综合利用了计算机图形学、仿真技术、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互...PCL 利用 OpenMP、GPU、CUDA 等先进高性能计算技术,通过并行化提高程序实时性; PCL 中 K 近邻搜索操作的架构是基于 FLANN 所实现的,速度也是目前技术中最快的。...从算法的角度,PCL 是指纳入了多种操作点云数据的三维处理算法,其中包括:过滤、特征估计、表面重建、模型拟合和分割、定位搜索等。...libpcl features: 实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH 和 FPFH 特征,旋转图像、积分图像,NARF 描述子,RIFT, 相对标准偏差,数据强度的筛选等等

    1.8K20

    塔秘 | 关于无人车的十万个为什么

    这种训练有助于减少转向偏差,避免长时间驾驶后汽车从道路一边慢慢漂移到道路另一边的尴尬情境。...下面这张图片由前中央相机拍摄,分辨率为320*160像素,包含红色、绿色和蓝色的channel。在Python中,可以将其表示为一个三维数组,其中每个像素值的范围在0到255之间。...英伟达模型相关论文地址: https://arxiv.org/pdf/1604.07316v1.pdf 之后,我们需要将三维数组规范化为单位长度,防止模型中较大的值偏差。...之后,我们需要将车道标记等三维数组进行卷积,提取关键特征,这些信息对于预测转向角至关重要。 ? 我们想让开发的模型能够驾驭任何道路类型,因此需要用dropout减少过拟合。 ?...训练模型 构建了模型后,我们需要训练模型自己学习开车了。 从技术角度上讲,现阶段的目标是尽量准确地预测转向角。在此,我们将损失定义为预测和实际转向角之间的均方误差。

    62470

    自适应滤波器(一)LMS自适应滤波器

    自适应滤波器简介   在很多信号处理系统中,并没有信号的先验统计特性,不能使用某一固定参数的滤波器来处理,比如信道均衡、回声消除以及其他因素之间的系统模型等,均采用了调整系数的滤波器,称为自适应滤波器。...该函数图形是L+2维空间中一个中间下凹的超抛物面,有唯一的最低点,该曲面称为均方误差性能曲面,简称性能曲面。 均方误差性能曲面的梯度: ?...下面我们先来看梯度下降法,再来看下前面的公式:(梯度下降的原理可参考我的另一篇文章:基于梯度下降算法的线性回归拟合(附python/matlab/julia代码)) 误差信号为: ?...均方误差为: ? 利用最陡下降算法,沿着性能曲面最速下降方向(负梯度方向)调整滤波器强权向量,搜索性能曲面的最小点,计算权向量的迭代公式为: ?...LMS滤波器的应用场景比较多,比如在机器学习中,期望确实是已知的,我们希望通过迭代训练出合适的滤波器系数; 在语音信号的线性预测中,将延时后的输入信号作为参考信号,即 ?

    4.5K31

    无人车是怎样一步步学会开车的?

    这种训练有助于减少转向偏差,避免长时间驾驶后汽车从道路一边慢慢漂移到道路另一边的尴尬情境。...下面这张图片由前中央相机拍摄,分辨率为320*160像素,包含红色、绿色和蓝色的channel。在Python中,可以将其表示为一个三维数组,其中每个像素值的范围在0到255之间。...英伟达模型相关论文地址: https://arxiv.org/pdf/1604.07316v1.pdf 之后,我们需要将三维数组规范化为单位长度,防止模型中较大的值偏差。...之后,我们需要将车道标记等三维数组进行卷积,提取关键特征,这些信息对于预测转向角至关重要。 我们想让开发的模型能够驾驭任何道路类型,因此需要用dropout减少过拟合。...训练模型 构建了模型后,我们需要训练模型自己学习开车了。 从技术角度上讲,现阶段的目标是尽量准确地预测转向角。在此,我们将损失定义为预测和实际转向角之间的均方误差。

    562100

    无人车是怎样一步步学会开车的? | 自动驾驶科普

    这种训练有助于减少转向偏差,避免长时间驾驶后汽车从道路一边慢慢漂移到道路另一边的尴尬情境。...下面这张图片由前中央相机拍摄,分辨率为320*160像素,包含红色、绿色和蓝色的channel。在Python中,可以将其表示为一个三维数组,其中每个像素值的范围在0到255之间。...英伟达模型相关论文地址: https://arxiv.org/pdf/1604.07316v1.pdf 之后,我们需要将三维数组规范化为单位长度,防止模型中较大的值偏差。...之后,我们需要将车道标记等三维数组进行卷积,提取关键特征,这些信息对于预测转向角至关重要。 我们想让开发的模型能够驾驭任何道路类型,因此需要用dropout减少过拟合。...训练模型 构建了模型后,我们需要训练模型自己学习开车了。 从技术角度上讲,现阶段的目标是尽量准确地预测转向角。在此,我们将损失定义为预测和实际转向角之间的均方误差。

    75030

    关于无人车的十万个为什么

    这种训练有助于减少转向偏差,避免长时间驾驶后汽车从道路一边慢慢漂移到道路另一边的尴尬情境。...下面这张图片由前中央相机拍摄,分辨率为320*160像素,包含红色、绿色和蓝色的channel。在Python中,可以将其表示为一个三维数组,其中每个像素值的范围在0到255之间。...英伟达模型相关论文地址: https://arxiv.org/pdf/1604.07316v1.pdf 之后,我们需要将三维数组规范化为单位长度,防止模型中较大的值偏差。...之后,我们需要将车道标记等三维数组进行卷积,提取关键特征,这些信息对于预测转向角至关重要。 我们想让开发的模型能够驾驭任何道路类型,因此需要用dropout减少过拟合。...训练模型 构建了模型后,我们需要训练模型自己学习开车了。 从技术角度上讲,现阶段的目标是尽量准确地预测转向角。在此,我们将损失定义为预测和实际转向角之间的均方误差。

    61370

    全局多项式(趋势面)法与逆距离加权(IDW)法插值的MATLAB实现

    趁热打铁,前期我们介绍了地统计基本概念:克里格插值、平稳假设、变异函数、基台、线性无偏最优等与MATLAB求取空间数据的变异函数并绘制经验半方差图这一地学计算的基本实践操作后,我们将深入探讨、实战地学计算中插值问题的两个重要方法...前者基于信息点之间相似程度或整个曲面的平滑程度创建拟合曲面,后者则基于信息点综合统计学规律,对其空间自相关性定量化,从而创建插值面。...此外,依据插值结果曲面中采样点预测值与实测值的关系,又可分为精确性插值与不精确插值。   ...本文借助MATLAB软件自主编程,分别利用全局多项式插值法与逆距离加权法,对湖北省荆门市沙洋县土壤pH值、有机质含量等两种属性数据进行空间插值计算,并对比对应插值方法的拟合效果。...全局多项式插值法以全部采样点覆盖区域为基础,通过最小二乘法等手段拟合出一个最合适的平面或曲面,使得各个采样点较为均匀地分布于这一平面或曲面的附近,且全部高出该面的点距之和与全部低于该面的点距之和的绝对值应当近似

    53930

    亚像素边缘的直线及圆弧的基元分割

    亚像素的边缘提取 在进行直线以及圆弧基元的分割的前提,是要将亚像素的边缘提取出来,这一部分内容,我们可以先提取像素级的边缘,在利用拟合曲面来提取亚像素的边缘。...利用梯度图像中边缘点的梯度方向,而亚像素级的最大值无非就是在梯度方向所在的直线上,利用曲面拟合,以及拟合后曲面和直线的交线,在求出交线的极值,就可以得到该点的亚像素表示。...如下图所示,为提取后的亚像素点。 ? ---- 2. ramer的多边形逼近 首先,在轮廓的起点和终点之间建立一条线段,然后计算所有轮廓控制点到线段的距离,并从中选出距离最大的控制点。...轮廓段的融合 根据相邻轮廓段的三个分割点不可能处在同一直线上这一前提拟合一个近似圆,然后计算该圆与对应轮廓段之间的最大偏差。...如果偏差比两个轮廓段与对应逼近线段的最大距离还要小,那么这两条轮廓段就标记为合并处理对象。否则继续对下对轮廓段进行同样的处理,经过多次迭代直到没有合并处理的对象为止。 ?

    2.4K60

    深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    缺点: 由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型。...鞍点就是:一个光滑函数的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。例如这个二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲,鞍点就是(0,0)。 ?...蓝色是 Momentum 的过程,会先计算当前的梯度,然后在更新后的累积梯度后会有一个大的跳跃。...这个分母相当于梯度的均方根 root mean squared (RMS),在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值 ,所以可以用 RMS 简写: ?...如果 mt 和 vt 被初始化为 0 向量,那它们就会向 0 偏置,所以做了偏差校正,通过计算偏差校正后的 mt 和 vt 来抵消这些偏差: ? 梯度更新规则: ?

    8.1K80

    【机器学习】第二部分上:线性回归

    梯度下降法 为什么使用梯度下降 在实际计算中,通过最小二乘法求解最优参数有一定的问题: (1)最小二乘法需要计算逆矩阵,有可能逆矩阵不存在; (2)当样本特征数量较多时,计算逆矩阵非常耗时甚至不可行....所以,在实际计算中,通常采用梯度下降法来求解损失函数的极小值,从而找到模型的最优参数....绘制样本散点图 mp.plot(train_x, pred_y, c="red", label="Regression") mp.legend() # 显示梯度下降过程(复制粘贴即可,不需要编写) # 计算损失函数曲面上的点...; (2)均方误差:单个样本到平均值差值的平方平均值; (3)MAD(中位数绝对偏差):与数据中值绝对偏差的中值; (4)R2决定系数:趋向于1,模型越好;趋向于0,模型越差....,从而避免过于拟合于样本,降低偏差较大的样本的权重和对模型的影响程度.

    1.9K31

    PCL点云库(Point Cloud Library)简介

    它综合利用了计算机图形学、仿真技术、多媒体技术、人工智能技术、计算机网络技术、并行处理技术和多传感器技术,模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互...当然,肯定有科研工作者的在应用或者学习PCL了,笔者依托于中国农业大学、农业部信息获取重点实验室,在与创始人Ruda博士交流后,深感PCL在复杂的农业对象中有不可估量的作用,例如对动植物的重建测度、果蔬等分级检测等应用领域...图3 PCL架构图 从算法的角度,PCL是指纳入了多种操作点云数据的三维处理算法,其中包括:过滤,特征估计,表面重建,模型拟合和分割,定位搜索等。...为了进一步简化和开发,PCL被分成一系列较小的代码库,使其模块化,以便能够单独编译使用提高可配置性,特别适用于嵌入式处理中: libpcl filters:如采样、去除离群点、特征提取、拟合估计等数据实现过滤器...; libpcl features:实现多种三维特征,如曲面法线、曲率、边界点估计、矩不变量、主曲率,PFH和FPFH特征,旋转图像、积分图像,NARF描述子,RIFT,相对标准偏差,数据强度的筛选等等

    2.3K30

    按部就班的吴恩达机器学习网课用于讨论(12)

    从本质的方法是,三维数据降低到二维数据的方法,将三维数据投射到一个二维平面上,该二维平面与所有数据点的距离平方和,应该要求最小。...但是降维后的数据中,每个维表示的意义,则需要自己定义。 如下,是将国家之间的一些数据,每条数据有50维,最后降低到二维z1,z2,然后绘制出来的数据可视化效果。...如上图 从特征向量U中,取得前k列特征向量,得到Ureduce(大小为n*k)。转秩后,通过与每个数据x(规模n*1)相乘,得到该条数据的k个特征。 ?...或者,使用svd函数的计算结果中的S,由于该矩阵为对角矩阵,容易计算,得到结果。也容易编程吧。 ? 重建的压缩表示 数据重构的方法如下所示,已经说明过。...其含义是将低维数据,通过Ureduce特征向量,重新投射到高维数据的世界中。 如下图中,表示降维前数据的位置(左),降维后的数据位置(下),恢复后的数据位置(右)。 ?

    53110

    一种基于相位靶标的摄像机标定迭代畸变补偿算法

    针孔模型通常用于描述一般的成像过程,它是世界上的一个三维点与相机中相应的二维图像之间的线性投影。然而,由于相机的畸变,真实的成像过程是一个非线性投影。相机镜头畸变可分为径向畸变、偏心畸变和薄棱镜畸变。...利用全场摄像机像素和相位靶标上的相应点来计算标定参数。可以得到基于线性投影的真实像素与重投影像素之间的畸变所引起的偏差。通过补偿偏差,可以得到一个像素的校正坐标。...所提出的畸变补偿方法需要计算真实像素与重投影像素之间的偏差。当使用相位靶标时,摄像机像素可以根据连续的相位图,根据不同的标定姿态找到相应的世界点。...随着窗口大小从0(没有应用拟合和插值)增加到5个像素,重投影误差的均方根(均方根)显著降低(如红线所示)。在这个过程中,旋转矩阵R的误差和平移矩阵t的误差也都减少了(分别由黑线和绿线所示)。...(a) 使用拟合方法前用常规方法标定点的重投影误差; (b) 在使用拟合方法之前,用常规方法在像素坐标方面的重投影误差; (c) 使用拟合方法后与常规方法在像素坐标方面的重投影误差; (d) 在使用拟合方法之前

    89210

    Matlab-RBF对iris鸢尾花数据集进行分类

    接着前面2期rbf相关的应用分享一下rbf在分类场景的应用,数据集采用iris 前期参考 Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 一、数据集 iris以鸢尾花的特征作为数据来源...函数,设定误差均方根值目标-0.02;径向基层的分布常数-1;最大的神经元个数-25 eg = 0.02; % 误差均方根值目标 sc = 1; % 径向基层的分布常数 mn = 25; % 最大的神经元个数...(XValidation)放在net变量,然后运行即可, Y = net(XValidation); 最后的结果进行归一化计算,得到对应的预测类别 输出仿真结果 output = zeros(1...97.7778 % , 思考:本次使用了RBF神经网络,RBF是一种前馈型的神经网络,它的激励函数一般是高斯函数,高斯函数是通过计算输入与函数中心点的距离来算权重的。...YValidation = outputData(orderTrain(nbertrain+1:flag))'; % net = newrbe(XTrain,YTrain); eg = 0.02; % 误差均方根值目标

    2K20

    NCL专辑 | 常用插值函数集锦

    函数的输入值是一组随机间隔的数据,这些数据可以是一维、二维或三维的。 注意,csagrid 是 ngmath 数据库中唯一一个为三维数据提供拟合曲面近似的软件包。...计算插值和近似方法可以分为两个基本类:拟合函数方法和加权平均数方法。拟合函数方法是对已知数据拟合一个代数曲面,然后从拟合曲面中提取插值或近似值。...该系列函数输入的是一组随机间隔的三维坐标及对应的数据,输出一组在用户指定的坐标上的插值函数值。注意:输出网格中的坐标必须在每个坐标方向上单调递增,但不需要均匀分布。...该系列插值函数可以实现以下功能:一维单值函数的插值;平面向曲线的插值;通过函数值的矩形网格计算插值曲面;一维周期函数的插值;求插值函数的积分和导数。...shgrid系列:实现了一个改进的Shepard算法,用于在三维空间中插入随机数据。它还提供了高效查找三维空间中给定点或最近点的功能。

    4.5K21
    领券