看来许多初学的同学和我一样,第一个念头就是我对机器学习和Python都不太了解,该读哪些书?今天我们聊书。
大家好,在之前的文章中我们已经解决了新手朋友们在初学Python的路上的两个常见问题:IDE怎么选、报错怎么办,今天本文再聊一下另一个常见话题:要不要买课、听什么课、看什么书。
有些标题党了,打我可以但是不可以打我脸,推荐我是认真的,4000 字长文,请慢慢食用
原作者 Radhouane Aniba 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 如何选书 选择一本合适的数据科学书至关重要,一本不适合的书会浪费你的时间以及精力。 有时候,书的大纲可能正合你意。但是随着你深入阅读时,可能会发现作者只触及了表面,并不够深入。这种情况之前也发在我的身上,我写这篇文章就是为了让你避免这种情况。 当我们选择数据科学相关书籍时,可以考录一下几点: · 看作者的个人简介:能够帮助了解作者的背景,他的研究和主要兴趣,同时也展现了本书的一些细节。但也要给新
《计算机程序的结构和解释》(在业界也称为SICP)是一本经典的书,它教编程的基础知识。
Python相对于其他的编程语言来说,更加的经典,简单,实用。但是再简单的编程语言,不懂得如何学习,也会事倍功半。
如何启动Python语言?我记得几年前遇到过这个问题。后来,我才注意到网络有点饿了,开始找一些书来咀嚼它。它觉得很困惑,觉得很辛苦,有许多波折。如果它们能降低初学者的兴趣,我现在就谈谈我对Python的理解。
前面的文章我们更多的是关注于函数,现在开始进入面向对象的世界了。函数是一种对过程的抽象,它提供了单一的入口和出口,封装了一系列的逻辑处理,而类和对象更像是对物体的抽象,它可以继承和组合。编程语言通过定义类,把某一种类型的物体抽象出来了,对象则是对每一个具体的物体的抽象。对象拥有着自己独特的操作方法和数据。这一篇文章先讨论抽象基类和属性化方法。
今天就结合自己入门时的学习历程和大家来聊一聊如何入门 Python,为了更有说服性一些,这里我把入门时看过的一些大佬推荐的书单进行了汇总,最后给出我觉得不错的书单,帮助你快速找到合适自己的书。
Python现在非常火,语法简单而且功能强大,很多同学都想学Python!所以小的给各位看官们准备了高价值Python学习视频教程及相关电子版书籍,欢迎前来领取!
前言 又到一年一度的读书日了,其他节日我们都会过一过,作为一名作者,在这个特殊的时候理应也有点仪式感。所以决定送大家几本签名书(文末有赠书方式)。 最近很多地方受疫情的影响,都在居家办公,居家办公最好的一点就是省去了通勤时间,在北上广这样的城市,一天的通勤时间大概得2个小时,而2个小时其实可以阅读不少书的,所以我们应该利用好这段特殊的时间,多读两本书。 刚好最近京东和当当都在搞活动,要比平常便宜不少,可以趁机囤一波书,不知道买什么书的可以看看我之前列的《一份数据分析师专属的书单》。 如果想要学数据分析工具,
小红书是一个热门的社交分享平台,汇聚了大量精美的图片。如果您希望保存或使用这些图片,本文将为您详细介绍如何使用Python爬虫轻松爬取小红书图片。
全民学python的热潮已经开启,然而,对于这种情况,还是有很多小伙伴私信我python到底该怎么入门?没接触过编程能学会吗?
我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。 抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。 不过现在要学数据分析的话,我可以从
我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。 抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。 不过现在要学数据分析的话
2017年11月29日,自己曾在公众号内写过一篇《聊聊我的R语言学习路径和感受》的文章,受到了很多朋友的关注和赞扬,同时,也有其他公众号在帮忙转载。当然,也有很多朋友也给我留言,能不能聊聊关于Python的学习建议,时隔一个多月,今天抽空再来谈谈自己学习Python的路程吧。
先来看看今天的主角是谁:《Python源码剖析——深度探索动态语言核心技术》,2008年出版,作者 @陈儒 ,评分8.7分。
昨天推送了一篇《来自Kenneth Reitz大神的建议:避免不必要的面向对象编程》,文中K神的建议出自他发起和维护的开源项目,这也就是我们今天荐书的主角了。
我是在半年前接触到Python的,我之前没有一点编程基础,但在我自学的这半年里,我发现自己越来越喜欢他,迄今为止,Python都非常友好并且易于学习!
最近一直被追着问,要给推荐一些自动化测试入门的书籍,其实只要把公众号里近200篇文章都翻上那么一遍,大致应该知道了自动化测试需要哪方面的技术了。 同时把所有文章中涉及的实例都调试通了、并理解了,不说深入理解、掌握自动化测试了,至少对自动化测试相关基础技术都应该有所掌握的。 无非就是懒 又或是 无非是坐等别人把什么都梳理好了 这里推荐一些书: 只涉及基础原理和技术的 不推荐市面上已经有的所谓各种xxx自动化测试相关的书 请自己去买或是搜索电子版,我不提供现成pdf等电子版本 首先,你需要一些编程类的学习,对于
话说有位日本网友,买了40多本数学和机器学习相关的书,愣是没有学会,直到遇到了这本,那叫一个相见恨晚呐!
对学习程序的同学而言,有一本好的学习python的课本,就如同有一个好的老师一样,所以本文为大家介绍书几本Python程序员必备的工具书!让学习python的同学赢在起跑线上。为Python程序员熟练掌握和使用做一些指导。
入门读物: 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。 数学之美 (豆瓣) 这本书非常棒啦,入门读起来很不错! 数据分析: SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和
第一部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy 和Pygal 等强大的Python 库和工具介绍,以及列表、字典、if 语句、类、文件与异常、代码测试等内容;
我不知道大家要花多长时间学习机器学习?前文我们已经介绍的Python爬虫和数据分析的知识,如果只是做入门,平均每门一个月,问题也是不大的;但大部分觉得机器学习很难学,需要很好的数学基础,现在毕业那么久,看到数学公式就晕,机器学习可能从入门直接到放弃,花很长时间都学不会。
最近想从图书馆里借一本书,可是图书馆里那两本书都借走了,其中有一本书在3月3号到期应还,所以我想着这几天那个人应该会来图书馆还书,所以我写了个python脚本,放在服务器上,每隔一段时间查询,如果那人还书了,邮件通知我。这样我就可以及时借书了,哈哈。
在 上次的送书活动 中,营长做了个调查问卷,结果显示大家更喜欢深度学习、Python以及TensorFlow方面的书,所以这期送书活动一并满足大家。本期图书选自人民邮电出版社图书,包括:近期AI圈儿比较流行的一本书《人工智能简史》,《TensorFlow机器学习项目实战》,高实战性的《Python机器学习经典实例》,深度学习领域的圣经“花书”,经典的《机器学习实战》,广受欢迎的《流畅的Python》,东京大学教授、机器学习专业专家杉山将执笔《图解机器学习》。另外,可在文末投票,选出下期你希望营长能够送的
本公众号所有内容,均属微信公众号: 开源优测 所有,任何媒体、网站或个人未经授权不得转载、链接、转贴或以其他方式复制发布/发表。已经本公众号协议授权的媒体、网站,在使用时必须注明"稿件来源微信公众号:开源优测",违者本公众号将依法追究责任。
最近在知乎上发现一个热门话题——有哪些你看了以后大呼过瘾的数据分析书?3万多人关注了该问题,被浏览251W+次。
周老师这本书用来当教材确实不错,不过自学的话跟李航老师的《统计学习方法》来比,确实不够详细,但周老师的书广度上要更加广泛。
这几天陆续收到很多读者、球友的留言、私信,说要怎么学Python?有没有基础的,偏小白的学习方法?我的回答是:等我统一答复。
我是自学的Python。从对Python一无所知,到在博客上写Python相关的系列文章(Python快速教程),前后有将近三年的时间。期间有不少门槛,但也充满乐趣。乐趣是自学的最大动力。Python是一个容易编写,又功能强大的动态语言。使用Python,可以在短短几行内实现相当强大的功能。通过自己写一些小程序,迅速的看到效果,发现问题,这是学习Python最便利的地方。
本文与大家分享一些Python编程语言的入门书籍,其中不乏经典。我在这里分享的,大部分是这些书的英文版,如果有中文版的我也加上了。有关书籍的介绍,大部分截取自是官方介绍。 Python基础教程(Beg
1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python](http://interactivepython.org/courselib/static/pythonds/index.html)时写下的阅读记录,当然,也结合了部分[算法导论]( http://en.wikipedia.org/wiki/Introduction_to_Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用P
机器学习是个跨领域的学科,而且在实际应用中有巨大作用,但是没有一本书能让你成为机器学习的专家。
导读:马云说996是“修来的福报”;刘强东给你讲了“地板闹钟的故事”;李国庆认为“管理者提高决策科学性比员工加班更有价值”;经济学家林采宜直接怼马云,说“996是一种洗脑文化”。
原标题: The 7 best deep learning books you should be reading right now 原作者: Adrian Rosebrock 翻译者: Amusi
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = =,持续更新ing~ 数据分析 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回归、降维等方法都有写 推荐指数:五颗星 2.数据分析-R语言实战 评
python和R是数据科学家手中两种最常用的工具,R已经介绍的太多了,后续我们来玩玩python吧。从出身来看,R是统计学家写的,python是计算机科学家写的,两者的出生背景不一样,随着数据爆发,python也慢慢发展,逐渐在数据科学中找到了一席之地。 包: python也有非常多的扩展包,不过用于数据分析的并不象R那么品种繁多。常用的: numpy:提供最基本的数值计算,使向量化计算成为可能。 scipy:提供了包括最优化在内的科学计算函数,不用自己写啦。 pandas:提供了类似dataframe的
最近有位微信昵称为Andy的读者在后台留言,问我关于新手学习Python的问题。他的问题是关于以下三点,相信很多读者都有相同的问题。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = = 数据分析篇 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 https://book.douban.com/subject/20382244/ 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回
1024 · 程序员节临近 一向花式宠粉的博文菌 怎会放过这个特别的节日呢! 趁这日子口儿 博文菌带来了一系列精彩活动 行业大咖私房书单 领域专家精彩联播 十日荐书计划 百份大厂联名福袋 学院课程全场超值秒杀 学院超级会员1元抢 …… 限定活动不间断进行 整整十天高密度福利轰炸 给你安排上了! ▼ 博文视点程序员读书节 10月15日-10月24日 十日好书&惊喜不间断 一波带走十重满足!我可以! 第 一 弹 十日荐书计划 第一日 荐书官:蒋金楠(Artech) 国内.NET领军人物、知名博
谈到人工智能(AI)算法,常见不外乎有两方面信息:铺天盖地各种媒体提到的高薪就业【贩卖课程】、知乎上热门的算法岗“水深火热 灰飞烟灭”的梗【贩卖焦虑】。
这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。
这可能是有史以来最令人兴奋的计算机书!我开始编程的时候还是个孩子,那是在80年代。据我所知,这是一本使用BBC B型微机的手册。“BBC用户指南”真的为我打开了一个全新的世界,并为我的余生设置了潜在的计算参数。
在现代编程语言里,类和对象都是绕不过的话题。对象这个概念可以是生活的抽象,为了更好的理解使用书来做比喻,每一本书都是一个对象,也就是一个实例,书本身具有的页码等等固定不变的东西,就是属于书的性质(属性),而我们对书有着一系列的操作,比如打开书,合上书,在编程语言里称为方法。我们把各种各样的书都可以抽象为一种类型,也就是类。先有类,再有实例,类是对象的蓝本。
领取专属 10元无门槛券
手把手带您无忧上云