首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于词典的中文情感倾向分析算法设计

    情感倾向可认为是主体对某一客体主观存在的内心喜恶,内在评价的一种倾向。它由两个方面来衡量:一个情感倾向方向,一个是情感倾向度。 情感倾向方向也称为情感极性。在微博中,可以理解为用户对某客体表达自身观点所持的态度是支持、反对、中立,即通常所指的正面情感、负面情感、中性情感。例如“赞美”与“表扬”同为褒义词,表达正面情感,而“龌龊”与“丑陋”就是贬义词,表达负面情感。 情感倾向度是指主体对客体表达正面情感或负面情感时的强弱程度,不同的情感程度往往是通过不同的情感词或情感语气等来体现。例如:“敬爱”与“亲爱

    04

    基于Python的情感分析案例——知网情感词典

    情感分析指的是对新闻报道、商品评论、电影影评等文本信息进行观点提取、主题分析、情感挖掘。情感分析常用于对某一篇新闻报道积极消极分析、淘宝商品评论情感打分、股评情感分析、电影评论情感挖掘。情感分析的内容包括:情感的持有者分析、态度持有者分析、态度类型分析(一系列类型如喜欢(like),讨厌(hate),珍视(value),渴望(desire)等;或着简单的加权极性如积极(positive),消极(negative)和中性(neutral)并可用具体的权重修饰)、态度的范围分析(包含每句话,某一段、或者全文)。因此,情感分析的目的可以分为:初级:文章的整体感情是积极/消极的;进阶:对文章的态度从1-5打分;高级:检测态度的目标,持有者和类型。

    04

    NLP入门+实战必读:一文教会你最常见的10种自然语言处理技术(附代码)

    大数据文摘作品 编译:糖竹子、吴双、钱天培 自然语言处理(NLP)是一种艺术与科学的结合,旨在从文本数据中提取信息。在它的帮助下,我们从文本中提炼出适用于计算机算法的信息。从自动翻译、文本分类到情绪分析,自然语言处理成为所有数据科学家的必备技能之一。 在这篇文章中,你将学习到最常见的10个NLP任务,以及相关资源和代码。 为什么要写这篇文章? 对于处理NLP问题,我也研究了一段时日。这期间我需要翻阅大量资料,通过研究报告,博客和同类NLP问题的赛事内容学习该领域的最新发展成果,并应对NLP处理时遇到的各类状

    02

    提供一个10分钟跑通 AI Challenger 细粒度用户评论情感分析的fastText Baseline

    上一篇《AI Challenger 2018 进行时》文尾我们提到 AI Challenger 官方已经在 GitHub 上提供了多个赛道的 Baseline: AI Challenger 2018 Baseline,其中文本挖掘相关的3个主赛道均有提供,非常适合用来学习:英中文本机器翻译的 baseline 就直接用了Google官方基于Tensorflow实现的Tensor2Tensor跑神经网络机器翻译Transformer模型,这个思路是我在去年《AI Challenger 2017 奇遇记》里的终极方案,今年已成标配;细粒度用户评论情感分析提供了一个基于支持向量机(SVM)的多分类模型 baseline;观点型问题阅读理解提供一个深度学习模型 baseline , 基于pytorch实现论文《Multiway Attention Networks for Modeling Sentence Pairs》里的思路。

    00
    领券