首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pca

    PCA简介 PCA是Principal Component Analysis(主成分分析)的缩写,此方法的目标是找到数据中最主要的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭露出隐藏在复杂数据背后的简单结构...K-L变换与PCA image.png PCA算法的理论依据是K-L变换,通过寻找线性变换W,实现对高维数据的降维。 混乱的数据中通常包含三种成分:噪音、旋转和冗余。...PCA的模型中存在假设条件: 1.PCA的内部模型是线性的,kernel-PCA就是使用非线性的权值对PCA扩展; 2.针对的样本的概率分布模型只限于指数概率分布模型。...对于线性来说,对应的方法是LDA PCA不具有鉴别特性 LDA与PCA的目标不一样,导致他们的方法也不一样。...PCA分类时一般使用主向量作为特征进行分类,而不是降维后的矩阵来分类。 参考文章: 奇异值分解及其应用 百度文库 PCA与SVD Kernel PCA的推导

    81820

    python实现PCA降维的示例详解

    PCA通常用于高维数据集的探索与可视化。还可以用于数据压缩,数据预处理等。PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分( principal components)。...PCA的设计理念与此类似,它可以将高维数据集映射到低维空间的同时,尽可能的保留更多变量。PCA旋转数据集与其主成分对齐,将最多的变量保留到第一主成分中。假设我们有下图所示的数据集: ?...当数据集不同维度上的方差分布不均匀的时候,PCA最有用。(如果是一个球壳形数据集,PCA不能有效的发挥作用,因为各个方向上的方差都相等;没有丢失大量的信息维度一个都不能忽略)。...python实现PCA降维代码 # coding=utf-8 from sklearn.decomposition import PCA from pandas.core.frame import...('test_PCA.csv',index=False,header=False) 以上这篇python实现PCA降维的示例详解就是小编分享给大家的全部内容了,希望能给大家一个参考。

    2.5K10

    PCA分析

    主成分分析简介 主成分分析 (PCA, principal component analysis)是一种数学降维方法, 利用正交变换 (orthogonal transformation)把一系列可能线性相关的变量转换为一组线性不相关的新变量...在空间上,PCA可以理解为把原始数据投射到一个新的坐标系统,第一主成分为第一坐标轴,它的含义代表了原始数据中多个变量经过某种变换得到的新变量的变化区间;第二成分为第二坐标轴,代表了原始数据中多个变量经过某种变换得到的第二个新变量的变化区间...这么多的变量在后续统计分析中会增大运算量和计算复杂度,应用PCA就可以在尽量多的保持变量所包含的信息又能维持尽量少的变量数目,帮助简化运算和结果解释。 去除数据噪音。...而PCA在降维的过程中滤去了这些变化幅度较小的噪音变化,增大了数据的信噪比。 利用散点图实现多维数据可视化。...利用PCA分析,我们可以选取贡献最大的2个或3个主成分作为数据代表用以可视化。这比直接选取三个表达变化最大的基因更能反映样品之间的差异。

    1.1K80

    使用Python实现主成分分析(PCA

    主成分分析(Principal Component Analysis,PCA)是一种常用的降维技术,它通过线性变换将原始数据映射到一个新的坐标系中,使得数据在新坐标系中的方差最大化。...在本文中,我们将使用Python来实现一个基本的PCA算法,并介绍其原理和实现过程。 什么是主成分分析算法? 主成分分析算法通过寻找数据中的主成分(即方差最大的方向)来实现降维。...PCA算法会选择最大的k个特征值对应的特征向量,这些特征向量构成了数据的主成分,然后将原始数据投影到这些主成分上,从而实现降维。 使用Python实现主成分分析算法 1....通过使用Python的NumPy库,我们可以轻松地实现主成分分析算法,并将数据投影到选定的主成分上,从而实现降维和可视化。...希望本文能够帮助读者理解主成分分析算法的基本概念,并能够在实际应用中使用Python实现主成分分析算法。

    81310

    Python3入门机器学习(七)- PCA

    所以式子可以进一步化解, 2.化简过后可以进行向量化,即每一个∑(X(i)·w1)·X1(i) 可以看成是(X·w)这个向量的转置(本来是个行向量,转置后是1行m列的列向量)与X这个矩阵(m行n列)点乘等到的其中一项的相乘相加的结果...如何将我们的样本X从n维转化成k维呢,回忆们之前学到的,对于一个X样本,与一个W进行点乘,其实就是讲一个样本映射到了w这个坐标轴,得到的模,如果讲这一个样本和这k个w分别点乘,得到的就是这一个样本,在这...k个方向上映射后每一个方向上的大小,这k个元素合在一起,就代表这一个样本映射到新的k个轴所代表的坐标系上相应的这个样本的大小 X1分别乘以W1到Wn,得到的k个数组成的向量,就是样本1映射到Wk这个坐标系上得到的...k维的向量,由于k<n,所以我们就完成了一个样本从n维到k维的映射,这个过程依次类推从样本1到样本m都这么,我们就将m个样本都从N维映射到了k维-----其实我们就是做了一个乘法X·WT(为什么是转置呢...,因为我们是拿X的每一行去和W的每一行点乘的,但是矩阵乘法规定是拿X的每一行和W的每一列乘法) ?

    1.4K30

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券