引言:在数据分析时,对大量信息进行归纳是最基本的任务,而这就需要用到描述统计方法。
前言 很多时候我们走着走着就会忘记当初为什么而出发。就像数据分析一样,现在被炒得很热,但是数据分析究竟在分析些什么呢?很多新人可能被唬住了,其实这些在我们以前的统计学中都学过。 不管是用Python还是R,其实和用Excel一样,只不过现在之所以用Python、R是因为大数据时代么,数据太多,Excel的处理能力跟不上,但是这些都只是一个工具而已,核心还是围绕统计学不变的。 今天就来聊聊我们该从哪些方向去分析(描述)数据。 总体概览指标: 总体概览指标又称统计绝对数,是反映某一数据指标的整体规模大小,总量多
总第56篇 很多时候我们走的走的就会忘记当初为什么而出发。 我们有的时候在拿到数据以后不知道该怎么进行分析,该去分析什么,其实这些在我们以前的统计学中都学过。 不管是用Python还是R,其实和用Excel一样,只不过现在之所以用Python、R是因为大数据时代么,数据太多,Excel的处理能力跟不上,但是这些都只是一个工具而已,核心还是围绕统计学不变的。 今天就来聊聊我们该从哪些方向去分析(描述)数据。 01|总规模度量: 总量指标又称统计绝对数,是反映某一数据的整体规模大小,总量多少的指标。他是对原
Ex1: Given a data = [6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36],求Q1, Q2, Q3, IQR Solving: 步骤: 1. 排序,从小到大排列data,data = [6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49] 2. 计算分位数的位置 3. 给出分位数
一般在数据分析的过程中,拿到数据不会去直接去建模,而是先做描述性分析来对数据有一个大致的把握,很多后续的建模方向也是通过描述性分析来进一步决定的。那么除了在Excel/R中可以去做描述性分析。
描述性统计是借助图表或者总结性的数值来描述数据的统计手段。数据挖掘工作的数据分析阶段,可以借助描述性统计来描述或总结数据的基本情况。
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。统计学主要又分为描述统计学和推断统计学。给定一组数据,统计学可以摘要并且描述这份数据,这个用法称作为描述统计学。另外,观察者以数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。
导读:大多数情况下,数据分析的过程必须包括数据探索的过程。数据探索可以有两个层面的理解:
每个研究生都盼望着“天天有数据,年年发文章”,但有时候我们会发现实验数据中存在一些不合理的值。剔除这些异常值的办法有很多,在这里小编教大家使用箱线图剔除异常值。
格式符为真实值预留位置,并控制显示的格式。格式符可以包含有一个类型码,用以控制显示的类型,如下:
统计学是一门研究数据收集、分析和解释的学科,它在数据分析中起着重要的作用。Python作为一种功能强大的编程语言,在数据分析领域拥有广泛的应用。本文将介绍Python数据分析中的重要统计学概念,帮助您更好地理解和应用统计学知识。
Python3 中有六个标准的数据类型:Number(数值)、String(字符串)、List(列表)、Tuple(元组)、Sets(集合)、Dictionary(字典)。
探索性数据分析(Exploratory Data Analysis ,EDA)是对数据进行分析并得出规律的一种数据分析方法。它是一个数据试图讲述的故事。EDA是一种利用各种工具和图形技术(如柱状图、直方图等)分析数据的方法。
在数据分析中,数据的选择和运算是非常重要的步骤。数据选择和运算是数据分析中的基础工作,正确和高效的选择和运算方法对于数据分析结果的准确性和速度至关重要。
用户输入两个数M和N,其中N是整数,计算M和N的5种数学运算结果,并依次输出,结果间用空格分隔。 5种数学运算分别是: M与N的和、 M与N的乘积、 M的N次幂、 M除N的余数、 M和N中较大的值
各位观众点进标题看文章的时候,我已经准备打包行李去UC报道啦~ 冷笑话结束,嗯,说正事。 请大家思考一下在 python 控制台输入 0.1 + 0.2 == 0.3 ,返回的结果是什么? 手边有电脑的同学可以立即在 python 控制台下尝试一下,对浮点数精度不够了解的同学可能会大呼:天啦噜,夭寿啦,怎么会是 False ! 没错 ,不管是在 Python,还是 C++、Java、JavaScript 等其他语言中,都是 False。 为什么会出现这样的结果?首先我们要了解,在计算机的存储类型为二进制,
一是仅利用一些工具,对数据的特征进行查看;二是根据数据特征,感知数据价值,以决定是否需要对别的字段进行探索,或者决定如何加工这些字段以发挥数据分析的价值。字段的选取既需要技术手段的支撑,也需要数据分析者的经验和对解决问题的深入理解。
python3.8.5下载地址: 64位:https://www.python.org/ftp/python/3.8.5/python-3.8.5-amd64.exe 32位:https://www.python.org/ftp/python/3.8.5/python-3.8.5.exe 安装: 下载后双击安装,注意区分32位和64位系统 注意:安装时“Add Python 3.8.5 to PATH”前面打勾,其他建议默认安装 2020最新零基础Python 链接:https://pan.baidu.c
导读:数据清洗是数据分析的必备环节,在进行分析过程中,会有很多不符合分析要求的数据,例如重复、错误、缺失、异常类数据。
在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可……
1、什么是描述性统计? 2、统计量 1)常用统计量 2)变量的类型 3)本文章使用的相关python库 3、频率与频数 1)频率与频数的概念 2)代码演示:计算鸢尾花数据集中每个类别的频数和频率 4、集中趋势 1)均值、中位数、众数概念 2)均值、中位数、众数三者的区别 3)不同分布下,均值、中位数、众数三者之间的关系 4)代码:计算鸢尾花数据集中花萼长度的均值、中位数、众数 5、集中趋势:分位数 1)分位数的概念 2)怎么求分位数? 3)分位数是数组中的元素的情况 4)分位数不是数组中的元素的情况:使用分摊法求分位数 5)numpy中计算分位数的函数:quantile() 6)pandas中计算分位数的函数:describe() 6、离散程度 1)极差、方差、标准差的概念 2)极差、方差、标准差的作用 3)代码:计算鸢尾花数据集中花萼长度的极差、方差、标准差 7、分布形状:偏度和峰度 1)偏度 2)峰度
描述性统计,就是从总体数据中提取变量的主要信息(总和、均值等),从而从总体层面上,对数据进行统计性描述。
NumPy是Python中用于科学计算的一个强大的库,其中包含了丰富的数学和统计函数。这些统计函数允许用户对数组进行各种统计计算,例如平均值、标准差、方差、最大值、最小值等。在本文中,我们将详细介绍NumPy中一些常用的统计函数及其用法。
数据预处理常用的处理步骤,包括找出异常值、处理缺失值、过滤不合适值、去掉重复行、分箱、分组、排名、category转数值等,下面使用 pandas 解决这些最常见的预处理任务。
猴子数据分析训练营的第2关视频课程是《如何看懂数据?》,根据同学在训练营里的讨论,我对常见问题进行了整理和回答。
数据的集中趋势描 述是寻找反映事物特征的数据集合的代表值或中心值,这个代表值或中 心值可以很好地反映事物目前所处的位置和发展水平,通过对事物集中 趋势指标的多次测量和比较,还能够说明事物的发展和变化趋势。国家 的人均GDP就是一个集中趋势指标,虽然每个人对国家的GDP贡献度不 一样,但是人均GDP能够代表每个人对国家GDP的平均贡献度,从而反 映一个国家的经济发展水平。
来源:DeepHub IMBA本文约1500字,建议阅读5分钟我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。 分箱是一种常见的数据预处理技术有时也被称为分桶或离散化,他可用于将连续数据的间隔分组到“箱”或“桶”中。在本文中,我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。 我们创建以下合成数据用于演示 import pandas as pd # version 1.3.5import numpy as npdef create_df():df
Python是一门易学的面向对象的程序设计语言,可以轻易地完成界面、文件、封装等高阶需求,可移植性好,有非常多功能强大的库与包,如Numpy(数值计算)、SciPy(数学、科学与工程计算)、Matplotlib(数据绘图工具)等等,强大的Python除了可以实现应用程序开发、数据可视化、网站开发以外,近年来机器学习人工智能大火,Python作为首选开发语言更是成为了编程语言中的香饽饽,我们还要什么理由不学习一下呢,好啦~
最后一个函数比较特殊,ord函数根据ASCII码将单个字符转换为数值,与之相对,chr函数可以将数值转换为ASCII编码的字符。
在原生 Python 中,如果我们想计算一个元素为数值型的可迭代对象中所有元素的和,可以使用 Python 内置的 sum 函数。在 NumPy 中不仅支持 Python 内置的 sum 函数,而且还提供了优化后的 numpy.sum。
在使用 pandas 进行数据分析时,进行一定的数据探索性分析(EDA)是必不可少的一个步骤,例如常见统计指标计算、缺失值、重复值统计等。
何为EDA,何谓探索性数据分析?英文名为Exploratory Data Analysis,是在你拿到数据集后,并不能预知能从数据集中找到什么,但又需要了解数据的基本情况,为了后续更好地预处理数据、特征工程乃至模型建立。因此探索性数据分析,对了解数据集、了解变量之间对相互关系以及变量与预测值之间的关系尤其重要。
“数据科学家们80%的精力消耗在查找、数据清理、数据组织上,只剩于20%时间用于数据分析等。”——IBM数据分析
眨眼间我们就从人工特征、专家系统来到了自动特征、深度学习的人工智能新时代,众多开源测试数据集也大大降低了理论研究的门槛,直接加载数据集就可以开始模型训练或者测试。然而面对实际问题时,收集到的数据往往不是像数据集中那样整理好的,直接用来跑模型会带来各种各样的问题。这时候我们就开始回忆起「特征工程」这一组容易被忽略但解决问题时不可或缺的硬功夫。 数据科学家 Dipanjan Sarkar 近日就发布了两篇长博客介绍了一些基本的特征工程知识和技巧。这篇为上篇(原文:http://t.cn/RQoVmUm ),主要
百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列。如,处于p%位置的值称第p百分位数。
在进行数据分析时,我们往往不会对原始的一条一条的数据直接进行分析,因为那毫无意义。通常,需要对数据先做一些聚合运算,比如求和、求平均值、计数等,也就是会用到一些分析指标和术语,这些指标和术语可以帮助我们打开思路,从多种角度对数据进行深度解读。
描述性统计分析(Description Statistics)是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间的关系进行估计和描述的方法。描述性统计分析分为集中趋势分析和离中趋势分析。
在《Python数据清洗--类型转换和冗余数据删除》和《Python数据清洗--缺失值识别与处理》文中已经讲解了有关数据中重复观测和缺失值的识别与处理,在本节中将分享异常值的判断和处理方法。
import math f = 11.2print math.ceil(f) #向上取整print math.floor(f)#向下取整print round(f) #四舍五入 #这三个函数的返回结果都是浮点型…
枚举其实就是利用计算机计算速度快的好处,来多次不停尝试代入某些值,使得满足我们需要的结果。本题主要采用枚举方式来解题较为快捷,主要限定几个数据范围即可。
1.文件与数据 Tableau使用的数据结构必须是标准的关系型数据库中的二维表结构。 1.1 Tableau文件类型 文件类型 文件大小 使用场景 具体内容 数据源.tds 小 频繁使用的数据源 完整的数据源定义 数据提取.tde 大 数据源为远程,希望提高库性能 筛选出的部分或完整的源数据本地副本 工作薄.twb 小 默认保存方式 仅包括数据源定义和可视化图表定义,无源数据 工作薄.twbx 大 与无法访问源数据的用户分享工作结果 所有信息和源数据 1.2 数据整理操作 名称与重命名 更改数据类型:数值
今天我们用的是一个新的数据集,也是在kaggle上的一个比赛,大家可以先去下载一下:
本文是【统计师的Python日记】第7天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型。 第2天学习了python的函数、循环和条件、类。 第3天了解了Numpy这个工具库。 第4、5两天掌握了Pandas这个库的基本用法。 第6天学习了数据的合并堆叠。 原文复习(点击查看): 第1天:谁来给我讲讲Python? 第2天:再接着介绍一下Python呗 【第3天:Numpy你好】 【第4天:欢迎光临Pandas】 【第四天的补充】 【第5天:Pandas,露两手】 【
在前面的文章中讲过,很多模型的假设条件都是数据是服从正态分布的。这篇文章主要讲讲如何判断数据是否符合正态分布。主要分为两种方法:描述统计方法和统计检验方法。
python的数值类型包括常规的类型:整数(没有小数部分的数字)、浮点数(通俗地说,就是有小数部分的数字)以及其它数值类型(复数、分数、有理数、无理数、集合、进制数等)。除了十进制整数,还有二进制数、八进制数、十六进制数。
如果我们手上有一个数值向量,怎么用R去获取这个向量的各个分位数值呢?我们来看个具体的例子
f-string,亦称为格式化字符串常量(formatted string literals),是Python3.6新引入的一种字符串格式化方法,该方法源于PEP 498 – Literal String Interpolation,主要目的是使格式化字符串的操作更加简便。f-string在形式上是以 f 或 F 修饰符引领的字符串(f'xxx' 或 F'xxx'),以大括号 {} 标明被替换的字段;f-string在本质上并不是字符串常量,而是一个在运行时运算求值的表达式:
领取专属 10元无门槛券
手把手带您无忧上云