提取文本数据中的子列表可以通过各种方式实现,具体取决于文本数据的结构和提取子列表的条件。例如:使用字符串操作和条件判断、使用正则表达式、使用自然语言处理工具、使用自定义解析器等几种模式,那么对于在日常使用中会有那些问题呢 ?一起跟着我了解下。
文件分割可以使用split命令,该即支持文本文件分割,又支持二进制文件分割;而合并文件可以使用cat命令。
当需要将较大的数据上传到服务器,或从服务器下载较大的日志文件时,往往会因为网络或其它原因而导致传输中断而不得不重新传输。这种情况下,可以先将大文件分割成小文件后分批传输,传完后再合并文件。
选自arXiv 作者:Pengyuan Lyu等 机器之心编译 参与:Nurhachu Null、李泽南 在计算机视觉的应用场景里,对图像中的文本进行准确识别是重要而相对困难的任务。来自华中科技大学的研究者们近日提出了一种全新的多项文本检测方法,大幅提高了机器学习的识别准确度。该研究已被即将于 6 月 18 日在美国盐湖城举行的 CVPR 2018 大会接收。 简介 最近,由于现实世界应用(如产品搜索 [4],图像检索 [19],以及自动驾驶)需求的增长,从自然场景图像中提取文本信息的研究正变得越来越流行
def huoquyuanma(url = ‘https://www.tujigu.com/’):
正则表达式通常缩写为 regex,是处理文本的有效工具。本质上,它们由一系列建立搜索模式的字符组成。该模式可用于广泛的字符串操作,包括匹配模式、替换文本和分割字符串。
文档布局分析 (Document Layout Analysis) 是识别和分类文本文档的扫描图像中的感兴趣区域(RoI, Regions of Interest) 的过程。阅读系统需要从非文本区域分割文本区域,并按正确的阅读顺序排列。将文本正文,插图,数学符号和嵌入文档中的表格等不同区域(或块)的检测和标记称为几何布局分析。但文本区域在文档中扮演不同的逻辑角色(标题,标题,脚注等),这种语义标记是逻辑布局分析的范围。
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。LangChain目前有两个语言的实现:Python和Node.js
如果我们把 Typescript 编译器看成一个黑盒的话。其输入则是使用 TypeScript 语法书写的文本或者文本集合。
由于各种不同的问题,我们经常会遇到需要将一个大文件分割存储的问题。比如github里单个文件大小一般不能超过100M、比如FAT32文件系统里单个文件大小不能超过4G,比如我们想把某一个数据文件分割存储和查看,比如对日志文件进行分割保存等等。
需要用到3个库:jieba(用于分割文本为词语)、imageio(用于读取图片)、wordcloud(功能核心,用于生成词云)。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 量子位 授权 都说Transformer适合处理多模态任务。 这不,在视频目标分割领域,就有人用它同时处理文本和视帧,提出了一个结构更简单、处理速度更快(每秒76帧)的视频实例分割框架。 这个框架只需一串文本描述,就可以轻松将视频中的动态目标“抠”出来: 可以实现端到端训练的它,在基准测试中的多个指标上表现全部优于现有模型。 目前,相关论文已被CVPR 2022接收,研究人员来自以色列理工学院。 主要思路 根据文本描述进行视频目标分割这一多模态任务(R
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 都说Transformer适合处理多模态任务。 这不,在视频目标分割领域,就有人用它同时处理文本和视帧,提出了一个结构更简单、处理速度更快(每秒76帧)的视频实例分割框架。 这个框架只需一串文本描述,就可以轻松将视频中的动态目标“抠”出来: 可以实现端到端训练的它,在基准测试中的多个指标上表现全部优于现有模型。 目前,相关论文已被CVPR 2022接收,研究人员来自以色列理工学院。 主要思路 根据文本描述进行视频目标分割这一多模态任务(RVOS),需要
SQL 中的 TRIM 函数是用来移除掉一个字串中的字头或字尾。最常见的用途是移除字首或字尾的空白。
AI技术的飞速发展不仅改变了人们的生活方式,也大大提升了各行各业的生产效率和创新能力。
对文本进行OCR前,必须分析和定义文档的逻辑结构。例如文本块、段落、行的位置;是否有应该重建的表格;是否有“图像”“条形码等”。
注意:为了保证兼容性,要判断元素节点的节点类型(nodeType),若nodeType==1,再执行删除操作。通过这个方法,就可以在 IE和 Mozilla 完成正确的操作。
在文本编辑器算法中,以高性能和高可用著称的piece table算是一个被埋没的数据结构。Visual Studio Code采用了该算法,MS Word也采用了该算法。
"LangChain 系列" 是一系列全面的文章和教程,探索了 LangChain 库的各种功能和特性。LangChain 是由 SoosWeb3 开发的 Python 库,为自然语言处理(NLP)任务提供了一系列强大的工具和功能。
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。 LangChain目前有两个语言的实现:python、nodejs。
虽然Elasticsearch带有一些现成的分析器,然而在分析器上Elasticsearch真正的强大之处在于,你可以通过在一个适合你的特定数据的设置之中组合字符过滤器、分词器、词汇单元过滤器来创建自定义的分析器。
做OCR时遇到的一个重要的问题在于检测文本时容易把一段多行文本给检测成单行,这会导致在后期识别部分的准确率降低,毕竟把多行文字当成一行文字去识别,肯定无法得到准确地结果。因此在送入识别之前,需要对检测出的文本框内容进行多行文本检测与分割。也就是:
之前分享过 使用 mapinfo 创建 TAC 边界的方法,现如今,mapinfo 已经被禁用了,开源软件 QGIS 在通信网络优化工作中开始大量应用,今天分享一下如何使用 QGIS 创建 TAC 边界。
今天课代表就给大家盘点一下,那些在我的电脑上生存超过一个月甚至是超过两年的软件...当然,这是第一期。
手机端的OCR文字识别工具给大家推荐过白描和白描取字,PC端以前推荐过天若OCR,当时的感觉时这是一款ABBYY FineReader不错的替代品,但是经过几个版本的更新以后,功能越来越强大,天若OCR已经完全超过了ABBYY FineReader,列入课代表的开机自启必备名单中。
1.LangSplat: 3D Language Gaussian Splatting
有时候,我们需要给多个元素添加同一个动画,播放后,不难发现它们会一起运动,一起结束,这样就会显得很平淡无奇。
上一章我们介绍了《如何使用Transformers加载和运行预训练的模型》,实现了与GPT模型的对话和咨询功能。然而,这种原生模型的知识是有限的,它无法对一些未知内容做出准确的回答,比如最新的时事、小众的小说,以及法院档案中的案件等。通过使用Langchain,我们有可能使GPT模型能够理解文章内容并进行分析,从而弥补这一限制。
译者 | Arno 来源 | Analytics Vidhya 概览 想开始学习自然语言处理(NLP)吗?如果是,这是完美的第一步。 学习如何进行标识化(tokenization)[1]——这是为构
「语音」作为人工智能的「启蒙钥匙」,不仅率先踏出实验室大门,步入寻常百姓家,也成为了人类与AI初次触电的「桥接技术」。初期,智能语音技术的研究重心落在了语音识别领域,致力于使机器具备理解人类语言的能力。
从 .NET Framework 4.5 开始,正则表达式支持在匹配操作中指定超时时间。如果匹配超时,就会抛出 RegexMatchTimeoutException。
大数据文摘作品 编译:汪小七、Katrine Ren、夏雅薇 本篇文章作者是Matthew Mayo,选自KDnuggets(一个著名的数据挖掘网站)。简要介绍了12种类Unix操作系统命令行工具,以及这些命令行工具对数据科学研究和数据科学家的价值。 这篇文章概述了十二个可以用于数据科学项目的类Unix操作系统命令行工具。 这一系列工具不包括任何基本的文件管理命令(pwd、ls、mkdir、rm……)和远程桌面管理工具(rsh、ssh……),但是从数据科学角度来看,这些命令行工具都是比较实用的,通常用来进行
研究者提出的这一工具名为「Write-A-Video」,它可以根据文本来决定选取库中的哪些镜头或场景,以此来组成剪辑者所需的故事情节。该工具对新手非常友好,即使不具备专业的视频剪辑技巧也能得到高质量的视频蒙太奇。
机器之心报道 机器之心编辑部 视频分割效果优于所有现有方法,这篇入选CVPR 2022的论文是用Transformer解决CV任务的又一典范。 基于注意力的深度神经网络(DNN)在NLP和CV等不同领域的各种任务上都表现出了卓越的性能。这些进展使得此类网络(如 Transformer)成为解决多模态问题的有力候选。特别是近一两年,Transformer 模型已经开始在CV任务上大展手脚,从目标识别到检测,效果优于通用的CNN视觉骨干网络。 参考视频对象分割(referring video object se
作者:熊唯,黄飞,戈扬,腾讯 PCG 应用研究员 本文介绍了 QQ 研发中心自研的 PPT 重建技术,目前腾讯文档在进行接入工作。当前主流办公产品比如 office,wps,腾讯文档会采用 AI 技术对图片进行排版恢复还原为 doc 形式的文档。通常针对以文字偏多,格式简单的图像效果比较好。如果内容丰富,图片并茂的内容图像在转为 doc 文档时,由于图像比例,文档排版插入,对丰富背景还原度差等问题导致很多 ppt 形式的图片无法很好还原为电子文档。 目前越来越多的资源信息是以图像形式存储,然而很多
https://pan.baidu.com/s/1pCqptL6QwnP2eUeyAABnYA
Elasticsearch 还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条,先给出词条例子:
path_hierarchy tokenizer 把分层的值看成是文件路径,用路径分隔符分割文本,输出树上的各个节点。
一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立 的单词),然后输出 tokens 流。 例如,whitespace tokenizer 遇到空白字符时分割文本。它会将文本 "Quick brown fox!" 分割 为 [Quick, brown, fox!]。 该 tokenizer(分词器)还负责记录各个 term(词条)的顺序或 position 位置(用于 phrase 短 语和 word proximity 词近邻查询),以及 term(词条)所代表的原始 word(单词)的 start(起始)和 end(结束)的 character offsets(字符偏移量)(用于高亮显示搜索的内容)。
Go Ethereum 是以太坊协议的官方 Golang 执行层实现,可运行各种节点并提供网关访问以太坊网络;LangChain-Chatchat 是基于大语言模型的本地知识库问答应用实现,支持离线运行和多种模型接入;Shiori 是简单易用的书签管理器,支持命令行和 Web 应用程序,且可移植性强;Awesome Generative AI 是精选的生成式人工智能项目和服务列表,用于生成原创内容;DoctorGPT 是功能强大的语言模型,免费离线使用,适用于成为个人医生;Conferences 是会议演讲资料的存储库,方便查找和分享。
我们的作品是基于大模型实现的一个代码转译可视化工具,完全由 Rust 实现,也可能是这次赛事唯一一个用 Rust 实现的作品吧。
一图胜千言,LangChain已经成为当前LLM应用框架的事实标准,这篇文章就来对LangChain基本概念以及其具体使用场景做一个整理
Elasticsearch权威指南-索引管理 我们之前的index都是在创建document,让es自动帮我们创建index。现在我们来讲解如何手动创建index,以便更好适用我们的应用。
一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立的单词),然后输出 tokens 流。
实体是知识图谱最重要的组成,命名实体识别(Named Entity Recognition,NER)对于知识图谱构建具有很重要意义。命名实体是一个词或短语,它可以在具有相似属性的一组事物中清楚地标识出某一个事物。命名实体识别(NER)则是指在文本中定位命名实体的边界并分类到预定义类型集合的过程。
很久之前写过一个Vue组件,可以匹配文本内容中的关键词高亮,类似浏览器ctrl+f搜索结果。实现方案是,将文本字符串中的关键字搜索出来,然后使用特殊的标签(比如font标签)包裹关键词替换匹配内容,最后得到一个HTML字符串,渲染该字符串并在font标签上使用CSS样式即可实现高亮的效果。
正像陆奇博士所说的那样,大型语言模型为从文本生成到问题回答的各种任务提供了令人印象深刻的能力,不仅彻底改变了自然语言处理(NLP)领域,而且作为基础模型会改变整个软件生态。
项目地址:https://github.com/facebookresearch/XNLI
领取专属 10元无门槛券
手把手带您无忧上云