在中国的有一些餐馆,菜单上不仅有个中文名,还有英文名,有很专业的翻译,也有让人笑Cry的翻译。配上几张图感受一下。
此连接器提供一个 Sink,将分区文件写入 Hadoop FileSystem 支持的任何文件系统。要使用此连接器,添加以下依赖项:
上次写了30行代码把会计朋友的周常工作安排明白了,这周又遇到问题了。下午给发消息说,栋哥借用下你的网盘会员下载个CPA资料。我的10k每秒,等着下载完,我估计也考完试了。
通过之前的文章【Spark RDD详解】,大家应该了解到Spark会通过DAG将一个Spark job中用到的所有RDD划分为不同的stage,每个stage内部都会有很多子任务处理数据,而每个stage的任务数是决定性能优劣的关键指标。
通过上篇文章【Spark RDD详解】,大家应该了解到Spark会通过DAG将一个Spark job中用到的所有RDD划分为不同的stage,每个stage内部都会有很多子任务处理数据,而每个stage的任务数是决定性能优劣的关键指标。
linux下文件分割可以通过split命令来实现,可以将一个大文件拆分成指定大小的多个文件,并且拆分速度非常的快,可以指定按行数分割和安大小分割两种模式。Linux下文件合并可以通过cat命令来实现,非常简单。
第二届国际中文分词评测(Second International Chinese Word Segmentation Bakeoff,简称 SIGHAN05)于 2005 年夏天在韩国济州岛举行。SIGHAN05 提供AS、CITYU、MSR和PKU四个语料库,这些完整的训练集、测试集以及测试集的(黄金)标准切分以及评分脚本可免费用于研究目的。下面就是 SIGHAN05 的主页地址:
文件内数字批量求和 file格式: 1 2 3 4 5 file内所有数字求和 cat file|paste -sd+|bc -s指把所有的字符拼成一行 -d指定拼接符,这里是+ bc求和 切分文本文件并将切分后的文本文件批量重命名 split -l 10 temp.txt -d -a 2 temp_ ls |grep temp_|xargs -n1 -i{} mv {} {}.txt -l:按行分割,表示将temp.txt文件按10行一个文件分割成多个文件 -d: 添加数字后缀 -a 2: 表示
Claude 2 昨天正式发布,并且任何人可以登陆官网直接免费使用。废话不多说,直接上官方网址:https://claude.ai/chats
接下来我会带领大家一步一步地实现一个简单的RAG模型,这个模型是基于RAG的一个简化版本,我们称之为Tiny-RAG。Tiny-RAG是一个基于RAG的简化版本,它只包含了RAG的核心功能,即Retrieval和Generation。Tiny-RAG的目的是为了帮助大家更好地理解RAG模型的原理和实现。
Region自动切分是HBase能够拥有良好扩张性的最重要因素之一,也必然是所有分布式系统追求无限扩展性的一副良药。HBase系统中Region自动切分是如何实现的,这里面涉及很多知识点,比如Region切分的触发条件是什么、Region切分的切分点在哪里、如何切分才能最大的保证Region的可用性、如何做好切分过程中的异常处理、切分过程中要不要将数据移动等,这篇文章将会对这些细节进行基本的说明,一方面可以让大家对HBase中Region自动切分有更加深入的理解,另一方面如果想实现类似的功能也可以参考HBa
Region主动切分是HBase可以或许拥有优胜扩大性的最重要身分之一,也必定是所有分布式体系寻求无穷扩大性的一副良药。HBase体系中Region主动切分是若何实现的,这琅绫擎涉及很多常识点,比如Region切分的触发前提是什么、Region切分的切分点在哪里、若何切分才能最大年夜的包管Region的可用性、若何做好切分过程中的异常处理、切分过程中要不要将数据移动等,这篇文┞仿将会对这些细节进行根本的解释,一方面可以让大年夜家对HBase中Region主动切分有加倍深刻的懂得,另一方面如不雅想实现类似的功能也可以参考HBase的实现筹划。
Python版本: Python3.x 作者:崔家华 运行平台: Windows 编辑:黄俊嘉 IDE: Sublime text3 一、前言 上篇文章Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器讲解了朴素贝叶斯的基础知识。本篇文章将在此基础上进行扩展,你将看到以下内容: 1.拉普拉斯平滑 2.垃圾邮件过滤(Python3) 3.新浪新闻分类(sklearn) 二、朴素贝叶斯改进之拉普拉斯平滑 上篇文章提到过,
单一的日志文件可能会增长到很大,并且在程序启动时读取从而成为性能瓶颈。老的日志需要定时清理,但是对于一个大文件进行清理操作很费劲。
日志主要用于跟踪服务的运行信息,作为后端攻城狮,一般都会有一种想法,平时的时候希望日志越少越好,出问题的时候又总是抱怨,怎么才tmd这点日志,还在关键的地方没打印.
AI技术的飞速发展不仅改变了人们的生活方式,也大大提升了各行各业的生产效率和创新能力。
建一个K个数的最小堆,与堆顶比较,大于(等于)堆顶,依次插入堆,超过K个数,踢出堆顶
本文仅介绍wal的基本处理,如create、open、close、read等操作,从wal目录中加载snapshot,wal文件的创建,以及读取wal目录中的所有数据(主要是entryType、stateType、metadataType这几类)和接收到node.Ready()之后的写操作。
平时工作中,我习惯使用rz从本地上传文件到服务器,sz从服务器下载文件到本地,但对传输文件大小有限制,例如排查线上jvm的问题,需要生成了dump文件,可能有10G大,超过了限制,怎么下载呢?
本篇文章主要对 python logging 的介绍加深理解。更主要是 讨论在多进程环境下如何使用logging 来输出日志, 如何安全地切分日志文件。 1. logging日志模块介绍 python的logging模块提供了灵活的标准模块,使得任何Python程序都可以使用这个第三方模块来实现日志记录。python logging 官方文档 logging框架中主要由四个部分组成: Loggers: 可供程序直接调用的接口 Handlers: 决定将日志记录分配至正确的目的地 Filters: 提供更细粒
在 Python 中拆分文本文件可以通过多种方式完成,具体取决于文件的大小和所需的输出格式。在本文中,我们将讨论使用 Python 拆分文本文件的最快方法,同时考虑代码的性能和可读性。
现在只对常读和星标的公众号才展示大图推送,建议大家把betasec“设为星标”,否则可能看不到了!
外排序:因为海量数据无法全部装入内存,所以数据的大部分存入磁盘中,小部分在排序需要时存入内存。
* 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。 * 环境准备 (Windows或Linux版本都行): R下载:http://mirrors.us
单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。
Parakeet 旨在为开源社区提供灵活、高效和最先进的文本转语音工具包。它建立在 PaddlePaddle 动态图上,包括许多有影响力的 TTS 模型。
学习生信的过程中怎么能少了Linux呢。但是很多人都是Linux新手,又不想花钱买服务器,这里有个免费的网页版Linux服务(链接在文末),足够学习基础的Linux命令!
导读 ★ 本系列将持续更新20个机器学习的知识点 ” 1. 阈值类别特征的方差 2. 切分文本 3. 领域链接 4. TSS 5. 误差 6. 训练错误率 7. 真正类率 8. 丢弃概率 9. 数值下溢 10. 弱学习器 11. 权重衰减 12. 缺失值 13. N 14. 损失函数 15. 自然语言训练模型 16. 异或函数 17. 约登指数 18. 0损失 19. 超平面 20. 假设空间 ----
分析器(Analyzer) 一般由三部分构成,字符过滤器(Character Filters)、分词器(Tokenizers)、分词过滤器(Token filters)。
关于日志的一些问题: 单个文件过大会影响写入效率,所以会做拆分,但是到多大拆分? 最多保留几个日志文件?最多保留多少天,要不要做压缩处理? 一般都使用 lumberjack[1]这个库完成上述这些操作
这几天在认认真真地学习KOA框架,了解它的原理以及KOA中间件的实现方法。在研究KOA如何处理上传的表单数据的时候,我灵光一闪,这是不是可以用于断点续传?
原创文章,转载请务必将下面这段话置于文章开头处。 本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等。 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据
这个是个问题贴,由about云会员提问。会员答疑。提问和回答都比较有水平,分享出来。
Hadoop是一个使用JAVA开发的开源框架,是一个可以分析和处理海量数据的软件平台。它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。
有一天发现,在腾讯文档中想搜索之前写的东西需要收费了。这钱非花不可吗?好像不用。我们可以利用langchain+chatGLM在本地搭建自己的知识库,除了能搜索到文档这个功能,还能基于知识库内容和你进行对话问答~
导读 本系列将持续更新20个机器学习的知识点,欢迎关注。 1. 阈值类别特征的方差 图片 2. 切分文本 图片 3. 领域链接 图片 4. TSS 图片 5. 误差 图片 6. 训练错误率 图片 7. 真正类率 图片 8. 丢弃概率 图片 9. 数值下溢 图片 10. 弱学习器 图片 11. 权重衰减 图片 12. 缺失值 图片 13. N 图片 14. 损失函数 图片 15. 自然语言训练模型 图片 16. 异或函数 图片 17. 约登指数 图片 18. 0损失 图片 19. 超平面 图片 20. 假设
背景:分析用户在世界杯期间讨论最多的话题。 思路:把用户关于世界杯的帖子拉下来,然后做中文分词+词频统计,最后将统计结果简单做个标签云. 后续:中文分词是中文信息处理的基础,分词之后,其实还有特别多有趣的文本挖掘工作可以做,也是个知识发现的过程。 * 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、
在大数据技术体系当中,Hadoop技术框架无疑是重点当中的重点,目前主流的大数据开发任务,都是基于Hadoop来进行的。对于很多初入门或者想要学习大数据的同学们,对于大数据Hadoop原理想必是比较好奇的,今天我们就主要为大家分享大数据Hadoop技术体系详解。
Elasticsearch技术栈一直是日志、安全、搜索场景的开源首选方案。随着数据规模的海量增长,数据的写入、存储、分析、搜索、排序等场景都会遇到非常大的挑战(存储成本大、写入查询慢等),同时客户降本增效的诉求也越来越高。本文主要解析基于腾讯云ES构建低成本、高性能、高可用日志平台所利用的核心架构和技术。基于腾讯云ES自研存算分离、读写分离、查询/IO并行化、查询裁剪等一套完整的降本增效解决方案。本文将围绕以下几个关键自研技术点进行深入分析:
大数据领域一直面对的两大核心模块:数据存储,数据计算,HDFS作为最重要的大数据存储技术,具有高度的容错能力,稳定而且可靠。HDFS(Hadoop-Distributed-File-System),它是一个分布式文件系统,用于存储文件,通过目录树来定位文件;设计初衷是管理数成百上千的服务器与磁盘,让应用程序像使用普通文件系统一样存储大规模的文件数据,适合一次写入,多次读出的场景,且不支持文件的修改,适合做数据分析。
用哈希表存储用户记录,缺点是需要消耗较大的内存;用位图存储用户记录,缺点是位图一般处理整形,内容是字符串或者自定义类型就很勉强。基于以上,若将哈希和位图结合,称为布隆过滤器,会不会把上面的问题都解决了呢?
托马斯·贝叶斯 (Thomas Bayes),英国神学家、数学家、数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫;1742年成为英国皇家学会会员;1763年4月7日逝世。贝叶斯曾是对概率论与统计的早期发展有重大影响的两位(贝叶斯和布莱斯·帕斯卡Blaise Pascal)人物之一。
【前言:考虑到目前很多公司还都在用这个计算引擎,以及后续要讲的Hive原生支持的计算引擎也是MapReduce,并且为Spark和MapReduce的对比做铺垫,笔者今天详细阐述一下MapReduce。鉴于Hadoop1.X已过时,Hadoop3.X目前用的还不多,企业中目前大量运用的还是Hadoop2.X,所以以下都是基于Hadoop2.X版本的MapReduce(后续要讲的HDFS和Yarn也是)】
本来笔者是不打算写MapReduce的,但是考虑到目前很多公司还都在用这个计算引擎,以及后续要讲的Hive原生支持的计算引擎也是MapReduce,并且为Spark和MapReduce的对比做铺垫,笔者今天详细阐述一下MapReduce。鉴于Hadoop1.X已过时,Hadoop3.X目前用的还不多,企业中目前大量运用的还是Hadoop2.X,所以以下都是基于Hadoop2.X版本的MapReduce(后续要讲的HDFS和Yarn也是)。
HDFS是一种开源的分布式文件系统,基于常见商用硬件构建海量大规模存储集群,提供极低的存储成本,极大的存储容量支持。 HDFS提供高可靠性的数据保障,通常采用三副本冗余存储数据到不同的机器来实现容灾备份能力。 HBase基于HDFS实现存储计算分离架构的分布式表格存储服务
/usr/lib/python2.7/site-packages/pyPdf/generic.py
之前写过一篇文章,可能有些地方现在又有了新的思路或者感受,或者说之前没有突出重点。
声明:该公众号大部分文章来自作者日常学习笔记,也有部分文章是经过作者授权和其他公众号白名单转载,未经授权,严禁转载,如需转载,联系开白。
日志对于应用程序来说是非常重要的,Spring框架本身集成了不少其他工具,我们自身的应用也会使用到第三方库,所以我们推荐在Spring应用中使用SLF4J/Logback来记录日志。
领取专属 10元无门槛券
手把手带您无忧上云