生活中所说的“空间”,就是我们所处的地方,它有三个维度,它里面有各种物体,这些物体各自遵守着一定的运动规则——注意,“空间”非“空”——或者说,这个空间制定了某些规则,里面的物体必须遵循。有时候我们也会画出一个相对小的范围,在这个范围内的对象类型单一,且遵循统一的规律,比如这几年风靡各地的“创客空间”,其中的对象就是喜欢创造的人,他们遵循的规律就是“创造,改变世界”。诚然,由人组成的“空间”总是很复杂的,超出了本书的研究范畴,我们下面要研究的是由向量组成的“空间”,即“向量空间”。
背景:Python是一种解释型的编程语言,基本的python代码不需要任何中间编译过程来得到机器代码,而是直接执行。而对于C、C++等编译性语言就需要在执行代码前将其编译为机器指令。 但是,解释型代码的速度比编译型代码要慢,为了使得python代码更快,最好尽可能的使用Numpy和Scipy包中的函数编写部分代码。(注意:numpy和scipy是诸如C、C++等编译型语言编写实现的)
众所周知,Python 里面有一种特殊的方法叫做魔法方法;同时我们还知道字符串 s*整数 n 表示字符串复制了 n 次,一个 numpy 数组+一个数等于把这个数加到 numpy 数组的每个元素,最后得到新数组。或许大家觉得很奇怪,毕竟在上面的两个例子中乘法运算符和加法运算符做了很不符合常理的事情,一个数组+一个数完全说不通,看完今天的文章或许就能够说得通了。
Python本身对向量操作的支持并不是很好,需要借助列表推导式或函数式编程来实现,例如: >>> import random # 生成随机测试数据 >>> x = random.sample(range(1000), 5) >>> y = random.sample(range(1000), 5) # 列表推导式,模拟向量减法 >>> [vecX-vecY for vecX, vecY in zip(x,y)] [-171, -370, -66, 282, 231] # 列表推导式,模拟向量减法 >>>
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
深度学习:作为机器学习的一个子域,关注用于模仿大脑功能和结构的算法:人工神经网络。
NumPy数组在数值运算方面的效率优于Python提供的list容器。使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。
Pandas是一种流行的用于数据操作的Python库,它提供了一种称为“向量化”的强大技术可以有效地将操作应用于整个列或数据系列,从而消除了显式循环的需要。在本文中,我们将探讨什么是向量化,以及它如何简化数据分析任务。
Vmap是一种在python里面经常提到的向量化运算的功能,比如之前大家常用的就是numba和jax中的向量化运算的接口。虽然numpy中也使用到了向量化的运算,比如计算两个numpy数组的加和,就是一种向量化的运算。但是在numpy中模块封装的较好,定制化程度低,但是使用便捷,只需要调用最上层的接口即可。现在最新版本的mindspore也已经推出了vmap的功能,像mindspore、numba还有jax,与numpy的最大区别就是,需要在使用过程中对需要向量化运算的函数额外嵌套一层vmap的函数,这样就可以实现只对需要向量化运算的模块进行扩展。用一个公式来理解向量化运算的话就是:
大一学这个解析几何的时候就想着用一门语言把里面的算法都实现了,可是一直拖拖拉拉的处于未完工的状态。
对于一个马上要毕业的大四学生来说,突然由后端转学机器学习,学起来好难,尤其是回归那里,数学好难!!!!!!!! 因为回归的公式太难搞了,这里先整理一手分类的入门算法,KNN。
列表类占用的内存数倍于数据本身占用的内存,Python自带的列表类会储存每一个元素的数据信息,数据类型信息,数据大小信息等。这是因为Python语言是一种可以随时改变变量类型的动态类型语言,而C语言和Fortran语言是静态类型语言,静态类型语言一般会在建立变量前先定义变量,并且不可以修改变量的变量类型。总的来说,numpy模块有以下两个优点:
显然,在 Python 中,列表 * N 中的 * 运算符为重复操作,将列表中的每个元素重复 N 次。
1 pytorch安装 安装pytorch之前,需要安装好python,还没安装过python的宝宝请先移步到廖雪峰的python教程,待安装熟悉完之后,再过来这边。 我们接着讲。 打开pytorch
在Python中,列表支持与整数的乘法运算,但表示的是列表元素的重复,并生成新列表,如: >>> [1,2,3]*3 [1, 2, 3, 1, 2, 3, 1, 2, 3] Python列表不支持与整数的加、减、除运算,也不支持列表之间的减、乘、除操作,而加法运算则表示列表元素的合并,并生成新列表,如: >>> [1,2,3]+[4,5,6] [1, 2, 3, 4, 5, 6] 对于向量而言,经常需要这样的操作,例如向量所有分量同时加、减、乘、除同一个数,或者向量之间的加、减、乘、除运
# 参考网站:http://cs231n.github.io/python-numpy-tutorial/
没有乘法的神经网络,你敢想象吗?无论是单个神经元的运算还是卷积运算,都不可避免地要使用乘法。
线性代数对于理解机器学习和深度学习内部原理至关重要,线性代数是有关连续值的数学。许多计算机科学家在此方面经验不足,传统上计算机科学更偏重离散数学。这篇博文主要介绍了线性代数的基本概念,包括标量、向量、矩阵、张量,以及常见的矩阵运算,并且也有相应的Python代码实现。
注意:所有运行在内存的Tensors,除了 Char Tensor,都可以转换为Numpy array,并且可以相互转换
本文略难,系转载,原文出自,http://python.jobbole.com/83557/
本文介绍了Python中函数的一些特性,包括高阶函数、匿名函数、闭包、装饰器以及类型注解等。同时,本文还介绍了一些实例,以帮助读者更好地理解这些概念。
在机器学习框架方面,JAX是一个新生事物——尽管Tensorflow的竞争对手从技术上讲已经在2018年后已经很完备,但直到最近JAX才开始在更广泛的机器学习研究社区中获得吸引力。
举例来说,执行 x = 1234+5678 ,对编译型语言,是从内存读入两个short int到寄存器,然后读入加法指令,通知CPU内部的加法器动作,最后把加法器输出存储到x对应的内存单元(实质上,最后这个动作几乎总会被自动优化为“把加法器输出暂存到寄存器而不是内存单元,因为访问内存的时间消耗常常是访问寄存器的几十倍”)。一共2~4条指令(视不同CPU指令集而定)。
最近发现现在深入去写具体某个概念的时候会用到别的好多概念,就会出现由于别的概念不清楚而新概念整不明白的现象。所以我觉得应该先整理一下都有哪些概念,有个大概的了解之后再去细化的去研究具体某个概念吧。 向量 物理含义:有方向的线段 数学含义:有序数组 代数表示:由于向量是从起点指向终点,这里始终遵循起点为原点O,这样,向量就可以由终点的坐标来表示。比如,二维向量就是(x,y),三维就是(x,y,z),四五六七八维或更多维同理,只是超过三维的就没有几何意义了,或者可以说生活中基本就见不到可以类比的事物了
神经网络是由一个个层组合而成,每个层都会对输入进行添加权重,对于计算开始时间,神经网络会给出一个初始化的值,然后进行不断优化,也叫训练,每一次优化叫作一次训练过程
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/78904700
向量加和:A + B = B + A 需要维度相同 [1, 2] + [3, 4] = [4, 6]
我们可以创建一个NumPy数组(也就是强大的ndarray),方法是传递一个python列表并使用' np.array() '。在本例中,python创建了我们可以在这里看到的数组:
对于以向量为元素的集合 ,若对于向量集合 中的向量 和标量域 中的标量 ,以下两个闭合性和关于加法及乘法的 个定律均满足时,则称
今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法。
作为一个对线性代数一无所知的开发者,想快速对向量和矩阵进行一个了解和认识,那么本文就正好适合你。
什么是向量空间 特点: ① 包含向量 比如向量组,而且向量组内部的向量维数相同 ② 包含向量的运动 向量的加法->生成新的向量 向量的数乘->向量伸缩 ③ 向量的运动依然在空间中 向量相
初等代数是古老算术的推广和发展,在初等代数中开始用变量代替具体的数字,它的中心是解方程
当使用CUDA(Compute Unified Device Architecture)进行并行计算时,我们可以利用GPU(图形处理器)的强大性能来加速各种应用程序。
(force, angle) => (force_x, force_y),这个就是最终的结果。
NumPy,Python的数值计算库,它提供了许多线性代数函数。对机器学习从业人员用处很大。 在这篇文章中,你将看到对于机器学习从业者非常有用的处理矢量和矩阵的关键函数。 这是一份速查表,所有例子都很
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
概述 最近在看《Fluent Python》一书,书中解释了Python很多重要的设计理念和实践,下面是我在看此书的读书笔记。Python的设计思想主要体现在它的数据模型上,而数据模型所描述和传递的API更能让你创造出和抽象出自己对象世界。数据模型是对Python框架的描述。 magic and dunder:magic是特殊方法的昵称,dunder是双下划线. Data Model 深入 为了深入了解Python Data Model的内部实现,我们先看一下代码示例: # -*- coding:utf-
使用zeros创建一个3×23\times 23×2的0矩阵,还可以使用ones函数创建1矩阵
线性空间是定义在数域 F 上满足某些运算规律的向量集合,而数域本身也是一种特殊的集合。所以我们先讲数域,再讲线性空间
MATLAB作为一个高性能的科学计算平台,主要面向高级科学计算。MATLAB的基本计算单元是矩阵与向量,向量为矩阵的特例。一般而言,二维矩阵为由行、列元素构成的矩阵表示;对于m行、n列的矩阵, 其大小为m×n。在MATLAB中表示矩阵与向量的方法很直观,下面举例说明
NumPy提供了大量的数值编程工具,可以方便地处理向量、矩阵等运算,极大地便利了人们在科学计算方面的工作。另一方面,Python是免费,相比于花费高额的费用使用Matlab,NumPy的出现使Python得到了更多人的青睐
3.3 常见图形绘制[*] 1.折线图 -- plt.plot 变化 2.散点图 -- plt.scatter() 分布规律 3.柱状图 -- plt.bar 统计、对比 4.直方图 -- plt.hist() 统计,分布 5.饼图 -- plt.pie() 占比 4 Numpy 4.1 Numpy优势 1.定义 开源的Python科学计算库, 用于
选自Medium 机器之心编译 参与:蒋思源 本文从向量的概念与运算扩展到矩阵运算的概念与代码实现,对机器学习或者是深度学习的入门者提供最基础,也是最实用的教程指导,为以后的机器学习模型开发打下基础。 在我们学习机器学习时,常常遇到需要使用矩阵提高计算效率的时候。如在使用批量梯度下降迭代求最优解时,正规方程会采用更简洁的矩阵形式提供权重的解析解法。而如果不了解矩阵的运算法则及意义,甚至我们都很难去理解一些如矩阵因子分解法和反向传播算法之类的基本概念。同时由于特征和权重都以向量储存,那如果我们不了解矩阵运算
在前面的篇幅中,我们简单的介绍过矩阵的定义,按照原计划本来,今天准备写特征分解以及奇异值分解,但是发现这其中涉及到比较多的矩阵相关的知识,所以在讨论这些问题之前,我们先来学习一下矩阵以及线性空间、线性变换等矩阵的知识。 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,详细的定义可以参考人工智能AI(2):线性代数之标量、向量、矩阵、张量。 1 矩阵运算 矩阵运算在科学计算中非常重要 ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置。 加法 矩阵的加法满足下列运算
首先解答上一个文章Python扩展库numpy中的布尔运算中的问题,该题答案为[111, 33, 2],题中表达式的作用是按列表中元素转换为字符串后的长度降序排序。 ---------------------分割线------------------ numpy中的广播运算使得两个不同形状(但也有基本要求,不是任何维度都可以广播)的数组进行运算,较小维度的数组会被广播到另一个数组的相应维度上去,可以简化代码的编写(例如不需要编写循环)。 >>> import numpy as np # 列向量 >>> a
虽然张量看起来是复杂的对象,但它们可以理解为向量和矩阵的集合。理解向量和矩阵对于理解张量至关重要。
机器学习和数据分析变得越来越重要,但在学习和实践过程中,常常因为不知道怎么用程序实现各种数学公式而感到苦恼,今天我们从数学公式的角度上了解下,用 python 实现的方式方法。
将饱和度考虑在内的函数将结果钳制到可以存储的最小/最大值。没有饱和的函数在饱和发生时忽略内存问题。
领取专属 10元无门槛券
手把手带您无忧上云