本文在《基于暗通道先验条件图像去雾算法》的最后段matlab的图像去雾算法的基础上对matlab代码进行转化完成verilog的FPGA图像去雾算法。
自动驾驶、视频监控、军事侦察等户外视觉系统采集到的图像/视频极易受到恶劣天气的影响,不仅主观感受差,而且会对后续的目标检测、跟踪、分类与识别等智能化分析处理任务造成严重影响。雾霾是一种常见的图像降质因素,去雾技术通过对雾霾进行去除,可以有效提升图像的主观感受。从客观角度来看,增强后的图像有助于提升后续智能化分析处理任务的性能。因此,图像去雾成为近年来工业界和学术界的研究热点[1]。
前一篇文章详细介绍和总结基于溯源图的APT攻击检测安全顶会内容,花了作者一个多月时间。这篇文章将讲解ACE去雾算法、暗通道先验去雾算法以及雾化生成算法,并且参考了两位计算机视觉大佬(Rizzi 何恺明)的论文。希望这篇文章对您有所帮助,这些大佬是真的值得我们去学习,献上小弟的膝盖~fighting!
在这篇文章中,我们提出了一个端到端的网络,称为Cycle-Dehaze,为单一图像去雾问题,它配对的有雾图像和其对应的图像进行训练。也就是说,我们通过以不成对的方式加入干净和模糊的图像来训练网络。此外,所提出的方法不依赖于大气散射模型参数的估计。我们的方法通过结合循环一致性和感知损失来增强CycleGAN方法,以提高纹理信息恢复的质量,并生成视觉上更好的无雾霾图像。典型地,用于去雾的深度学习模型将低分辨率图像作为输入并产生低分辨率输出。然而,在NTIRE 2018单幅图像去雾挑战中,提供了高分辨率图像。因此,我们应用双三次降尺度。从网络获得低分辨率输出后,我们利用拉普拉斯金字塔将输出图像提升到原始分辨率。我们在NYU-Depth、, I-HAZE, and O-HAZE数据集上进行了实验。大量实验表明,该方法从定量和定性两个方面改进了CycleGAN方法。
论文地址:http://openaccess.thecvf.com/content_CVPR_2020/papers/Pang_BidNet_Binocular_Image_Dehazing_Without_Explicit_Disparity_Estimation_CVPR_2020_paper.pdf
论文:VIFNet: An End-to-end Visible-Infrared Fusion Network for Image Dehazing
近几年来,去雾方法得到广泛的研究,汤晓鸥等人发现无雾图像相对于雾化图像具有较高的对比度,通过最大化恢复图像的对比度来实现图像去雾,但由于该方法没有从物理模型上恢复真实的场景反射率,图像去雾后有可能出现颜色过饱和失真。 Kaiming He提出了一种基于暗通道先验的方法,即在有雾图像的特定窗中至少有一个颜色分量的值是零,该算法利用最小值滤波估算出介质传播函数,然后利用软抠图原理对估算的介质传播函数进行优化估计,达到了较好的去雾效果。软抠图需要较高计算量,很难得到实际应用。所以后来Kaiming He又提出了引导滤波法,来精细化透射率。
作者:Meng Yu, Te Cui, Haoyang Lu, Yufeng Yue
其实之前对图像去雾也没有什么深入的理解,只是了解,实现过一些传统的图像去雾方法而已。个人感觉,在CNN模型大流行的今天,已经有很多人忽略了传统算法的发展,以至于你今天去搜索10年前的传统去雾算法或许根本找不到相关资料了,或许这就是网络中的围城吧。今天周六有空来整理一下我所了解到的图像去雾技术的发展,并尝试做一个详细点的综述。
带有雾霾的图像具有低对比度和模糊的特性,这会严重影响下游图像处理模型的表现,例如行人检测、图像分割等。对此,大量的单幅图像去雾方法被开发出来,它们的目的在于把输入的带有雾霾的图像转换成一张清晰图像。然而,伴随着移动设备和边缘设备对分辨率为4k图像处理方法的需求的不断增长,现存的图像去雾的方法很少能高效地处理一张带雾的超高清图像[1]。
单幅图像去雾是一个具有挑战性的不适定问题。文献中现有的去雾方法,包括最近引入的深度学习方法,将去雾问题建模为估计中间参数的问题,场景透射图和大气光。这些用于根据模糊输入图像计算无模糊图像。这种方法只关注中间参数的精确估计,而优化框架中没有考虑无霾图像的美学质量。因此,中间参数估计中的误差经常导致产生低质量的无霾图像。在本文中,我们提出了CANDY(基于条件敌对网络的模糊图像去雾),这是一个完全端到端的模型,它直接从模糊的输入图像生成一个干净的无模糊图像。CANDY还将无雾霾图像的视觉质量纳入优化函数;从而产生高质量的无雾度图像。这是文献中第一个提出用于单一图像去雾的完全端到端模型的作品之一。此外,这是第一个工作,以探索概念的生成敌对网络的问题,单一图像霾清除。CANDY在合成创建的雾霾图像数据集上进行训练,而评估是在具有挑战性的合成和真实雾霾图像数据集上进行的。CANDY的广泛评估和比较结果表明,它在定量和定性方面都明显优于文献中现有的最先进的去雾方法。
在无雾图像中,每一个局部区域都很有可能会有阴影,或者是纯颜色的东西,又或者是黑色的东西。因此,每一个局部区域都很有可能有至少一个颜色通道会有很低的值。把这个统计规律叫做Dark Channel Prior。
本文对去雾算法进行了研究,总结了基于暗通道先验的去雾算法、基于中值滤波的去雾算法、基于Retinex图像增强的去雾算法、基于自适应直方图均衡化的去雾算法和基于自适应对比度增强的去雾算法。这些算法在图像去雾领域有着广泛的应用,但仍有许多不足,如速度慢、效果不够理想等。为了解决这些问题,作者提出了一种基于图像透射率图快速计算的去雾算法,该算法在处理速度、图像质量等方面均有较好的表现。
论文名称:Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation
1.Single Image Haze Removal Using Dark Channel Prior 何凯明 2009 CVPR
【图像分离、去雨/反射/阴影等】Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images
编者按:本文作者蔡博仑,华南理工大学在读博士研究生。主要研究方向,机器学习,计算机视觉,图像处理等。 导读 北京城被中度污染天气包围,到处都是灰蒙蒙一片——雾霾天又来了。从11日起,雾霾天气就开始出现,根据北京环境监测中心最新预报,这一轮雾霾短期内不会明显好转,尤其是今明两天,北京空气质量维持在4级中度污染,雾霾会一直持续到本周日。 雾霾是特定气候与人类活动相互作用的结果。高密度人口的经济生产及社会活动会排放大量细颗粒物,一旦排放量超过大气循环和承载能力,悬浮颗粒受静稳天气的影响持续积聚,极易出现大范围的雾
直方图是图像的一种统计表达形式,在一定程度上能够反映数学图像的概貌性描述,包括图像的灰度范围、灰度分布、整幅图像的亮度均值、阴暗对比度等,并可以此为基础进行分析来得出对图像进一步处理的重要依据。直方图均衡化也叫作直方图均匀化,就是把给定图像的直方图分布变换成均匀分布的直方图,是较为常用的灰度增强算法。直方图均衡化概括起来包括以下三个主要步骤。
这是OpenCV图像处理算法朴素实现专栏的第17篇文章。今天为大家带来一篇之前看到的用于单幅图像去雾的算法,作者来自清华大学,论文原文见附录。
论文地址:https://arxiv.org/pdf/2004.13388.pdf
Pytorch模块用来模型训练和网络层建立;其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。不仅能够实现强大的GPU加速,同时还支持动态神经网络。
上次搞的暗通道去雾的算法交给老师就算是交差了,当时也就是个调研而已。前几天又被老师叫过去说还是需要720p(1280*720)图像的实时处理,看能不能再做一些优化,让我和一个职工商量着来,于是又看了两天的去雾。还是有一些进展,总结一下。
介绍了一种新的多支路线性Transformer网络,称为MB-TaylorFormer,能够有效且高效的进行图像去雾任务。
AI 科技评论按:每月《Computer Vision News》都会选择一篇关于计算机视觉领域研究成果的论文进行回顾。今年三月份,他们选择了由 Yossi Gandelsman,Assaf Shocher 和 Michal Irani 三位学者(下文中所提到的作者,均指以上三位学者)共同完成的关于 Double-DIP 模型的论文,其中详细介绍了基于耦合的深度图像先验网络对单个图像进行无监督层分割这一技术。
去雾原理原理是根据何凯明博士的《Single Image Haze Removal Using Dark Channel Prior》这篇文章,介绍见https://www.cnblogs.com/Imageshop/p/3281703.html。及Python代码见:https://blog.csdn.net/wsp_1138886114/article/details/95012769。
CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像质量评价、图像去雾、图像修复、医学图像分割、目标检测、人脸对齐、度量学习等,其中有多篇来自CVPR 2019的论文代码。
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
本文通过分析一篇关于去雾算法的论文,指出了其中存在的诸多问题和不足,包括算法原理的不可靠性、计算用时的真实性、大气光值的计算不准确以及算法应用范围的局限性等问题。作者认为该论文在去雾领域存在严重的漏洞和不足,不应该被推广。
本文分享 ICCV 2023 论文MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor Formula for Image Dehazing,介绍更快、更灵活的 Transformer 图像去雾网络。
近五十年来,基于卷积神经网络的目标检测方法得到了广泛的研究,并成功地应用于许多计算机视觉应用中。然而,由于能见度低,在恶劣天气条件下检测物体仍然是一项重大挑战。在本文中,我们通过引入一种新型的双子网(DSNet)来解决雾环境下的目标检测问题。该双子网可以端到端训练并共同学习三个任务:能见度增强、目标分类和目标定位。通过包含检测子网和恢复子网两个子网,DSNet的性能得到了完全的提高。我们采用RetinaNet作为骨干网络(也称为检测子网),负责学习分类和定位目标。恢复子网通过与检测子网共享特征提取层,采用特征恢复模块增强可见性来设计。实验结果表明我们的DSNet在合成的有雾数据集上达到了50.84%的mAP,在公开的有雾自然图像数据集上达到了41.91%的精度。性能优于许多最先进的目标检测器和除雾和检测方法之间的组合模型,同时保持高速。
近年来,扩散模型[55; 17; 61]在文本到图像生成方面取得了显著进展。得益于对大规模图像-文本对的训练[56],这些模型能够生成与文本提示高度一致且多样化的真实图像。它们已成功应用于视觉设计、摄影、数字艺术和电影产业等众多现实世界应用。此外,使用遵循指令数据进行训练的模型[7]在理解人类指令和执行相应图像处理任务方面展示了有希望的结果。先前的研究表明,使用遵循指令数据,作者可以简单地对文本到图像生成模型进行微调,以执行各种视觉任务,如图像编辑、目标检测[20]、分割[21]、修复[69; 21]和深度估计[20]。为了追随这些方法的成功,作者使用输入-目标-指令三联数据进行低级图像处理任务的模型训练。
计算机视觉的底层,图像处理,根本上讲是基于一定假设条件下的信号重建。这个重建不是3-D结构重建,是指恢复信号的原始信息,比如去噪声。这本身是一个逆问题,所以没有约束或者假设条件是无解的,比如去噪最常见的假设就是高斯噪声。
arXiv:https://arxiv.org/pdf/2112.04491.pdf
从本周开始我们将举办CCF-腾讯犀牛鸟基金(以下简称犀牛鸟基金)技术沙龙系列分享活动,邀请犀牛鸟基金青年老师和腾讯技术团队分享机器学习、计算机视觉、知识图谱、信息安全等领域的前沿工作。 6月16日(明日)19:00,我们将在线上举办首场学术报告,届时将邀请中科院信息工程研究所任文琦老师和香港城市大学马柯德老师共话图像增强与质量评价的相关工作。 日常生活中,由于不可控拍摄环境(抖动、暗光)及恶劣气候(雨雪雾)等影响,手机摄影或者监控视频往往会伴随着图象质量的退化。任文琦老师将对面向图像恢复及增强的深度模型进
这个问题不是特别好准确回答,因为CV算法是一个非常大研究领域,包括目标检测,图像分割,图像生成,3D目标检测,三维图像重建,图像去雾,图像超分辨率等非常多的方向。你会这么问,我的感觉是你对其中哪个方向研究都不会很深,因为你是硕士研究生,我认为你一定要以毕业为主,因为这两年由于升学硕士和博士的人数在增加,毕业要求现在有所上升,然后我的建议是一定要和导师沟通,因为导师在你毕业流程中起了至关重要的作用,所以还是要跟导师保持紧密联系,由导师帮你确定详细方案。
去年谷歌就提出了SinGAN,是第一个拿GAN在单幅自然图像学习的非条件生成模型(ICCV 2019最佳论文)。
恶劣的天气条件,如雾霾和雨水,会破坏捕获图像的质量,导致训练在干净图像上的检测网络在这些图像上表现不佳。为了解决这一问题,我们提出了一种无监督的基于先验的领域对抗目标检测框架,使检测器适应于雾蒙蒙和多雨的条件。基于这些因素,我们利用利用图像形成原理获得的特定天气的先验知识来定义一个新的先验-对抗性损失。用于训练适应过程的前对抗性损失旨在减少特征中与天气相关的信息,从而减轻天气对检测性能的影响。此外,我们在目标检测管道中引入了一组残差特征恢复块来消除特征空间的扭曲,从而得到进一步的改进。针对不同情况(如霾、雨),在不同数据集(雾城景观、雨城景观、RTTS和UFDD)上进行的评估显示了所提方法的有效性。
随着人类对自然的过度开发,环境问题日益凸显,近年来新增的问题之一则是雾霾的出现,雾霾对视频监控系统提出了严峻考验,主要表现在几个方面:物体表面的反射光由于大气粒子的散射而产生衰减,造成物体成像的亮度减弱,图像色彩暗淡;反射光经大气粒子前向散射作用参与其它像素点成像,导致图像模糊、分辨率下降;部分大气粒子的粒径较大,在成像过程中成为噪声,成像上布满糙点;与成像无关的自然光经过大气粒子的散射,进入图像传感器参与成像,造成图像饱和度、对比度降低及色调偏移,一些重要目标的细节更是难以辨识。
尽管基于深度学习的目标检测方法在传统数据集上取得了可喜的结果,但从恶劣天气条件下捕获的低质量图像中定位目标仍然具有挑战性。现有方法要么难以平衡图像增强和目标检测的任务,要么经常忽略对检测有益的潜在信息。
内容相似度损失(包括特征和像素相似度)是逼真和视频风格迁移中出现伪影的主要问题。本文提出了一个名为CAP-VSTNet的新框架,包括一个新的可逆残差网络(reversible residual network)和一个无偏线性变换模块,用于多功能风格转移。这个可逆残差网络不仅可以保留内容关联性,而且不像传统的可逆网络引入冗余信息,因此更有利于风格化处理。借助Matting Laplacian训练损失,可以处理线性变换引起的像素亲和力损失问题,因此提出的框架对多功能风格迁移是适用和有效的。广泛的实验显示,CAP-VSTNet相比于现有方法可以产生更好的定量和定性结果。
图像处理(以及机器视觉)在学校里是一个很大的研究方向,很多研究生、博士生都在导师的带领下从事着这方面的研究。另外,就工作而言,也确实有很多这方面的岗位和机会虚位以待。而且这种情势也越来越凸显。那么图像处理到底都研究哪些问题,今天我们就来谈一谈。图像处理的话题其实非常非常广,外延很深远,新的话题还在不断涌现。下面给出的12个大的方向,系我认为可以看成是基础性领域的部分,而且它们之间还互有交叉 1、图像的灰度调节 图像的灰度直方图、线性变换、非线性变换(包括对数变换、幂次变换、指数变换等)、灰度拉伸、灰度均衡、直方图规定化等等)。 例如,直方图规定化(代码请见http://blog.csdn.net/baimafujinji/article/details/41146381)
源代码:https://github.com/wenyyu/ImageAdaptive-YOLO
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 论文获取|回复“IAYOLO”获取paper 源代码:https://github.com/wenyyu/ImageAdaptive-YOLO 计算机视觉研究院专栏 作者:Edison_G 最近开车发现雾天和晚上视线不是很清楚,让我联想到计算机视觉领域,是不是也是因为这种环境情况,导致最终的模型检测效果不好。最近正好看了一篇文章,说恶劣天气下的目标检测,接下来我们一起深入了解下。
领取专属 10元无门槛券
手把手带您无忧上云