我们经常会遇到一些对于多媒体文件修改的操作,像是对视频文件的操作:视频剪辑、字幕编辑、分离音频、视频音频混流等。又比如对音频文件的操作:音频剪辑,音频格式转换。再比如我们最常用的图片文件,格式转换、各个属性的编辑等。因为多媒体文件的操作众多,本文选取一些极具代表性的操作,以代码的形式实现各个操作。
前几天在Python最强王者群【定时】问了一个Python处理的问题,这里拿出来给大家分享下。
【导读】专知成员Hui上一次为大家介绍Matplotlib的使用,包括绘图,绘制点和线,以及图像的轮廓和直方图,这一次为大家详细讲解Numpy工具包中的各种工具,并且会举实例说明如何应用。Numpy是非常有名的python科学计算工具包,其中包含了大量有用的思想,比如数组对象(用来表示向量、矩阵、图像等等)以及线性代数,通过本章节的学习也为之后进行复杂的图像处理打下牢固的基础。 【干货】计算机视觉实战系列01——用Python做图像处理(基本的图像操作和处理) 【干货】计算机视觉实战系列02——用Pytho
前一阵给大家分享了,如何给图片加水印。评论区就有小伙伴问,可不可使用Python去除图片水印的方法呢?
分类:python 作者:TTyb文章发表于 2016-11-12 百度指数抓取,再用图像识别得到指数前言: 土福曾说,百度指数很难抓,在淘宝上面是20块1个关键字: 哥那么叼的人怎么会被他吓到,于是乎花了零零碎碎加起来大约2天半搞定,在此鄙视一下土福 安装的库很多: 谷歌图像识别tesseract-ocr pip3 install pillow pip3 install pyocr selenium2.45 Chrome47.0.2526.106 m or Firebox32.0.1 chromedr
参考书 《TensorFlow:实战Google深度学习框架》(第2版) 以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程。 #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: pycharm @file: figure_deal_test2.py @ti
0、opencv帮助 Reading and Writing Images and Video 1、如何在python下用opencv同时打开2个摄像头? 参考资料: opencv读取多个摄像头 OpenCV打开两个摄像头的问题 opencv同时开启两个摄像头采集图像 Opencv同时调用两个摄像头 opencv读取并显示两个摄像头 解决办法: 2、无法按space键保存图片:见p34_42managers.py cv2.waitKey()中的参数要设置大一些,如果为1会导致按space键无效,因为来不及,
这个系列的文章也讲解和分享了差不多三分之一吧,突然有小伙伴或者童鞋们问道playwright有没有截图的方法。答案当然是:肯定有的。宏哥回过头来看看确实这个非常基础的知识点还没有讲解和分享。那么在这个契机下就把它插队分享和讲解一下。Playwright提供了一个截屏的API:page.screenshot。使用该API,只需要指定截图的图片的保存路径及文件名即可。如果仅指定文件名,默认保存在当前目录。
前言:在最近的测试中遇到一个与PDF相关的测试需求,其中有一个过程是将PDF转换成图片,然后对图片进行测试。
粗略的试了好几种方式,其中语言尝试了Python和Java,总体而言所找到的Python方式相对比Java更快一些,更简单一些。
前两天看到篇介绍英伟达StyleGAN生成逼真假脸的文章,其源码正是通过Python和Tensorflow实现的,利用AI生成并不存在的头像图,来感受下:
对我个人而言使用Python图像处理意在取代matlab,集中化使用Python环境保证之后在机器学习和OpenCV的使用上具有一致性,虽然从实验室师兄师姐的口中得知Python的图像处理较之matlab相对复杂(应该只是代码量的问题),但我依然觉得学习python环境比较实用和高效。在进行Python图像处理之前,Pillow是不可或缺的实用性工具,pillow是Python Imaging Library的缩写,Pillow由PIL而来,导入该库使用import PIL。同时感谢Python社区内的翻译工作者,将pillow的英文稳当翻译为汉语文档。传统的PIL库不支持python3,所以使用从PIL派生出来的Pillow库。
之前有看到有人用python实现自动运行微信小程序《跳一跳》,后来看到别人用hash码实现《加减大师》的自动答题领取娃娃,最近一直在研究深度学习,为啥不用机器学习实现呢?不就是一个分类问题吗!
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 任务是中医药领域的问题生成挑战,而问题生成属于NLG中重要的一种应用。 问题生成任务需要我们根据篇章及对应的答案自动生成相应的问题,即“篇章+答案→问题”这样的流程。 训练集由三个字段(篇章、问题、答案)构成,测试集由两个字段(篇章、答案)构成,其中的问题字段需要我们生成。 根据以上分析,我们可以采用Seq2Seq模型来端到端地实现问题生成,而模型的输入为篇章和答案,输出为问题。 文本长度分布 篇章文本长度在100以
最近工作中的爬虫小知识,主要是python+selenium自动化截图以及tesseract的验证码自动校验(其实tesseract的正确率很差)。
某次测试中遇到了汉字点选的验证码,看着很简单,尝试了一下发现有两种简单的识别方法,终于有空给重新整理一下,分享出来。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012162613/article/details/43523507
今天使用Python图像处理库ImageGrab,在调用grabclipboard方法获取到剪切板上图片的时候报了这个让我懵圈了的异常~~
这篇博客将介绍使用Python,OpenCV获取、更改像素,修改图像通道,截取图像感兴趣ROI;单通道图,BGR三通道图,四通道透明图,不透明图;
国庆节终于来了,最近有个五星红旗半透明渐变头像很火,在抖音里、微信群里都流行起来了。
cv.addWeighted()——实现图像的混合 它的工作原理采用的是一个简单权重公式:g(x)=(1−α)f0(x)+αf1(x)
关注了很多的公众号,大佬们的骚操作层出不穷,看的我跃跃欲试。也想整一下。跟在大佬们的后面好看风景(复现操作)。
环境: Python版本:3.6.2 opencv版本:opencv-python==3.4.3.18 ---- 安装opencv pip install opencv-python ---- 对图片操作 import cv2 # 识别图片 img = cv2.imread('cup.jpg', flags=cv2.IMREAD_LOAD_GDAL) # 添加对图片的处理内容 # 展示的图片 cv2.imshow('hello', img) cv2.waitKey(0) cv2.destroyAll
前面我们讲到了adb的封装,里面具体讲到到了在一副图片中寻找目标的坐标并点击。这篇文章我们讲讲对一副图片的特定区域做截取,并利用开源库做图纹识别。
2、键盘Shift+鼠标右键- 在此处打开命令窗口- 在弹出的命令窗口中输入:Jupyter Notebook
seamlessClone是OpenCV3后添加的函数,使用此函数可以轻松将一幅图像中的指定目标复制后粘贴到另一幅图像中,并自然的融合。函数说明:
对图像进行预处理,可以尽量避免模型受到无关因素的影响。大部分图像识别问题中,通过图像预处理过程可以提高模型的准确率。
step0:概述 动机:手头有数个20秒左右的短视频(守望先锋最佳镜头),期望能组合成一个长视频 英雄不朽,图片来源http://upload-images.jianshu.io/upload_ima
大家好,我们又见面了,在上一期的文章中,我们简单的讲解了图像的数据形式以及三通道彩色图像的通道分离,通道分离的意义在于,我们在进行图像处理的时候可能并不需要三个通道的数据仅仅一个通道就可以解决了,因此,采用单个通道的数据可以使得图像处理节省更多的时间,关于上期的文章,见文末。当然通道分离也有其他的作用,先卖个关子,我们后期再叙,一起来看看今天的文内容吧。
为了丰富游戏短视频内容,针对王者荣耀,需要一套自动化剪辑精彩时刻的系统,以能够快速根据主播直播内容生成精彩时刻反馈到游戏短视频社区。
NirCmd是一个强大的命令行实用工具,可在Windows系统上执行各种系统操作和任务。它可以用于执行诸如调整音量、打开网站、控制窗口、发送键盘鼠标输入等常见任务。虽然NirCmd是一个独立的可执行文件,但我们可以使用Python来调用它并将其集成到我们的脚本中。 本文将介绍如何在Python中使用NirCmd。首先,我们需要下载并安装NirCmd,并确保它已添加到系统路径中。然后,我们将使用subprocess模块调用NirCmd命令并处理其输出。
为了防止老板看到我开小差,我创建了一个系统,自动识别他的脸并切换屏幕伪装成工作的样子。深度学习使你能够在老板接近时隐藏屏幕!
相信许多人很早就知道有扫雷这么一款经典的游(显卡测试)戏(软件),更是有不少人曾听说过中国雷圣,也是中国扫雷第一、世界综合排名第二的郭蔚嘉的顶顶大名。
赶快去检查/配置环境变量,看看有没有把opencv_world+版本号d.dll所在路径到系统环境变量path中去,如果没有问题,重启VS即可
玩抖音的朋友都应该知道,最近「卡点视频」简直不要太火。抖音上很多大神也出了剪辑各种卡点视频的教程。
比如不久前的复旦大佬,用130行Python代码硬核搞定核酸统计,大大提升了效率,节省了不少时间。
作者介绍: 叶成,数据分析师,就职于易居中国,热爱数据分析和挖掘工作,擅长使用Python倒腾数据。 前言 学习爬虫也有段时间了,闲着无趣,想找点项目练练手,于是乎通过顺祥老师介绍,接到了一个关于百度指数的爬虫需求。(百度指数可以反映一个词在一段时间内的搜索热度,不知道百度指数的同学们可以自行百度)。好的,话不多说,开始我们的项目。 百度指数页面 输入查询的关键字 嗯?跳转到了登陆界面!(赶紧拿出小本本记下,这里需要登陆)。 登陆后的展现 心中窃喜,脑子里满是抓包分析,模拟请求,获取指数,gam
最后总的效果还是不错的,从测试集上面看,单个字符的识别准确率平均能达到90%左右,最好的时候达到过93%。我想这也差不多达到了优化的极限了,毕竟在图片样子不标准,位置更不标准。而且仅仅在截取子图这一步上就会与实际情况有些出入,况且一些细微的差别就算是人脑也容易出错,比如1和7、i和j等等。加上我使用整个数据集的量不算大,满打满算也就500张图,所以能进行33个字符的识别已经挺不错的了。官网上60000张图的数据集的学习也差不多达到了93%而已。
深度学习中有一个很重要的概念就是卷积神经网络 CNN,卷积神经网络中又有卷积层、池化层的概念。尤其是卷积层,理解难度比较大,虽然书中或者是视频中都有详细介绍过它的基础概念,但对于求知欲望很强烈的我,我总心里痒痒的,总想亲手实现,看看效果,怕的就是自己会眼高手低,做技术人最可怕的就是眼高手低。所以,我打算用 python 来亲自验证一遍。
用python的matplotlib画出的图,一般是需要保存到本地使用的。如果是用show()展出的图,再右键保存,这样的图是失帧而非矢量的
相信最近两天大家都被微信头像的国庆版新装刷爆了朋友圈了,不少人都@微信官方,要求换装为国庆版头像,朋友圈也是各种生成链接满天飞。其实这个事情在小编看来没有那么复杂,这么简单的事情怎么好意思随便@,直接自己100行代码搞定。
前期有些自媒体大 V 靠搬运一些搞笑、好玩的 GIF,然后利用剪辑软件合成一段视频,再添加一个节奏感强的 BGM 后,上传各大自媒体平台后,能带来不错的阅读量和收益。
本次挑战内容来自Udacity自动驾驶纳米学位课程,素材中车道保持不变,车道线清晰明确,易于检测,是车道检测的基础版本,网上也有很多针对复杂场景的高级实现,感兴趣的童鞋可以自行了解。
github地址:https://github.com/tesseract-ocr/tesseract
我们现在使用的模型实现人脸检测,在2080TI上,大概13帧每秒,慢是慢了点,不过胜在精度比较高,如上图所示,都能正确识别,关键点也很准确。这是人脸检测。 在人脸检测之后,如果我们需要做人脸比对或者匹配,通常就需要先进行人脸对齐,这样在提取特征会更有效。所谓人脸对齐,其实就是将原来倾斜等的人脸转换成端正的。如下图:
最近在组会讲解框架时,在感受野这个小知识点,大家开始产生歧义,今天我就简单的给大家讲解下这个小知识点,也给初学者带来一个对Receptive Field崭新的认识,如果对只是有深入了解的你,就可以直接跳过O(∩_∩)O~~! 现在开始进入正题!!! ---- 以前我的理解就是,感受野嘛,其实那就是一个视觉感受区域大小。对于单层网络来说,下一层的一个像素点其感受野大小也就是卷积层滤波器的大小,想想其实很明了的就理解了,但对于多层,那就有一点点(也就那么一点点复杂而已)! 正式定义: 在神经网络中,感受野的定义
领取专属 10元无门槛券
手把手带您无忧上云