来源:机器之心 本文长度为2527字,建议阅读5分钟 本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。 长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。 这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你
来源:专知本文为书籍介绍,建议阅读5分钟本书以问题解决式的方法讲解如何实际实现Python时间序列分析和建模的各种概念,从数据读取和预处理开始。 本书以问题解决式的方法讲解如何实际实现Python时间序列分析和建模的各种概念,从数据读取和预处理开始。 本章首先介绍使用AR(自回归)、MA(移动平均)、ARMA(自回归移动平均)和ARIMA(自回归综合移动平均)等统计建模方法进行时间序列预测的基本原理。接下来,您将学习使用不同的开源包(如fbprophet、stats model和sklearn)进行单变量
选自machinelearningmastery 机器之心编译 参与:朱乾树、路雪 长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。 这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间
从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性
Jason Brownlee 机器学习方法,比如深度学习,是可以用来解决时间序列预测问题的。 但在使用机器学习之前,时间序列问题需要被转化为监督学习问题。从仅仅是一个序列,变成成对的输入、输出序列。
多元时间序列预测任务主要解决的是输入多变量时间序列,预测多变量未来序列的问题,多变量的序列之间存在一定的相互影响关系。多元时间序列预测相比一般的单变量时间预测,如何在建模temporal关系的同时建立不同变量空间上的关系至关重要。今天给大家介绍两篇2022年8月份发表的最新多元时间序列预测工作,两篇工作均有开源代码。
AI科技评论按:本文作者 Jason Brownlee 为澳大利亚知名机器学习专家,对时间序列预测尤有心得。原文发布于其博客。 Jason Brownlee 机器学习方法,比如深度学习,是可以用来解决时间序列预测问题的。 但在使用机器学习之前,时间序列问题需要被转化为监督学习问题。从仅仅是一个序列,变成成对的输入、输出序列。 这篇教程里,你将学到如何把单变量、多变量时间序列问题转为机器学习算法能解决的监督学习问题。本教程包含: 如何创建把时间序列数据集转为监督学习数据集的函数; 如何让单变量时间序
前言 Dynamic Time Warping(DTW),动态时间规整算法诞生有一定的历史了(日本学者Itakura提出),它出现的目的也比较单纯,是一种衡量两个长度不同的时间序列的相似度的方法。DTW应用也比较广,主要是在模板匹配中,比如说用在孤立词语音识别(识别两段语音是否表示同一个单词),手势识别,数据挖掘和信息检索等中。 一、DTW算法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人会
在这篇文章中,我们将深入探讨时间序列预测的基本概念和方法。我们将首先介绍单元预测和多元预测的概念,然后详细介绍各种深度学习和传统机器学习方法如何应用于时间序列预测,包括循环神经网络(RNN)、一维卷积神经网络(1D-CNN)、Transformer、自回归模型(AR)、状态空间模型、支持向量机(SVM)和随机森林(RF)等。我们还会讨论这些方法在单元预测和多元预测中的适用性。
像深度学习这样的机器学习方法可以用于时间序列预测。
作者:何之源 转载自知乎专栏:AI Insight 量子位 已获授权编辑发布 这篇文章中,作者详细介绍了TensorFlow Time Series(TFTS)库的使用方法。主要包含数据读入、AR模型的训练、LSTM模型的训练三部分内容。内容翔实有趣,量子位转载分享给大家。 前言 如何用TensorFlow结合LSTM来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在Github上搜索“tensorflow time series”,会发现star数最高的tgjeon/Tensor
作者:东哥起飞,来源:Python数据科学 本文开启时间序列系列的相关介绍,从零梳理时序概念、相关技术、和实战案例,欢迎订阅 👉「时间序列专栏」 跟踪全部内容。 本篇介绍时间序列的定义、任务、构成以及预测方法,主要是基本概念的介绍和理解。 时间序列定义 时间序列,通俗的字面含义为一系列历史时间的序列集合。比如2013年到2022年我国全国总人口数依次记录下来,就构成了一个序列长度为10的时间序列。 专业领域里,时间序列定义为一个随机过程,是按时间顺序排列的一组随机变量 ...X_1,X_2,..X_T...
前言 如何用TensorFlow结合LSTM来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在Github上搜索“tensorflow time series”,会发现star数最高的tgjeon/TensorFlow-Tutorials-for-Time-Series已经和TF 1.0版本不兼容了,并且其他的项目使用的方法也各有不同,比较混乱。 在刚刚发布的TensorFlow 1.3版本中,引入了一个TensorFlow Time Series模块,以下简称为TFTS)。TFT
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
Pandas DataFrame通常用于处理时间序列数据。对于单变量时间序列,可以使用带有时间索引的 Pandas 序列。而对于多变量时间序列,则可以使用带有多列的二维 Pandas DataFrame。然而,对于带有概率预测的时间序列,在每个周期都有多个值的情况下,情况又如何呢?图(1)展示了销售额和温度变量的多变量情况。每个时段的销售额预测都有低、中、高三种可能值。尽管 Pandas 仍能存储此数据集,但有专门的数据格式可以处理具有多个协变量、多个周期以及每个周期具有多个样本的复杂情况。
基于Transformer的多变量时间序列预测,是否需要显示建模各个变量之间关系呢?今天这篇文章来自清华大学近期发表的工作SageFormer,提出了一种新的基于Transformer的多变量时间序列预测算法,核心是利用token表征建立多变量的图结构关系。下面给大家详细介绍一下这篇文章。
在时间序列问题上,机器学习被广泛应用于分类和预测问题。当有预测模型来预测未知变量时,在时间充当独立变量和目标因变量的情况下,时间序列预测就出现了。
AI 科技评论按:本文作者何之源,原文载于知乎专栏AI Insight,AI 科技评论获其授权发布。 前言 如何用TensorFlow结合LSTM来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在Github上搜索“tensorflow time series”,会发现star数最高的tgjeon/TensorFlow-Tutorials-for-Time-Series已经和TF 1.0版本不兼容了,并且其他的项目使用的方法也各有不同,比较混乱。 在刚刚发布的TensorFlow
如何用 TensorFlow 结合 LSTM 来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在 Github 上搜索 “tensorflow time series”,会发现 star 数最高的 tgjeon/TensorFlow-Tutorials-for-Time-Series ( http://t.cn/Rpvepai)已经和 TF 1.0 版本不兼容了,并且其他的项目使用的方法也各有不同,比较混乱。 在刚刚发布的 TensorFlow 1.3 版本中,引入了一个 Ten
时间序列出现在经济、交通、健康和能源等多个领域,对未来值的预测具有许多重要应用。因此,人们提出了许多预测方法。为了确保研究的进展,有必要以全面和可靠的方式对这些方法进行研究和比较。
作者 | 何之源 前言 如何用TensorFlow结合LSTM来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在Github上搜索“tensorflow time seri
今天给大家介绍一篇KDD 2023会议上,由IBM研究院发表的一篇多元时间序列预测工作,模型整体结构基于patch预处理+MLP,支持时序预测和时间序列表示学习两类任务,同时提出了多阶段校准的方法,在预估结构中考虑时间序列的层次关系和多变量之间的依赖关系。
这是谷歌在9月最近发布的一种新的架构 TSMixer: An all-MLP architecture for time series forecasting ,TSMixer是一种先进的多元模型,利用线性模型特征,在长期预测基准上表现良好。据我们所知,TSMixer是第一个在长期预测基准上表现与最先进的单变量模型一样好的多变量模型,在长期预测基准上,表明交叉变量信息不太有益。”
作者 | 何之源 前言 如何用TensorFlow结合LSTM来做时间序列预测其实是一个很老的话题,然而却一直没有得到比较好的解决。如果在Github上搜索“tensorflow time series”,会发现star数最高的tgjeon/TensorFlow-Tutorials-for-Time-Series已经和TF 1.0版本不兼容了,并且其他的项目使用的方法也各有不同,比较混乱。 在此前发布的TensorFlow 1.3版本中,引入了一个TensorFlow Time Series模块(源码地
时间序列预测问题可以作为一个有监督学习问题来解决。
在交通和能源管理等现实场景中,常会遇到大量具有缺失值、噪声和不规则采样模式的时间序列数据。尽管目前已经提出了许多插值方法,但大多数倾向于在局部范围内运行,这涉及到将长序列分割成固定长度的片段进行模型训练,这种局部范围往往导致忽略全局趋势和周期性模式。更重要的是,大多数方法假设观测值是在规则的时间戳上采样的,无法处理各种应用中复杂的不规则采样时间序列。此外,大多数现有方法是以离线方式学习的,不适合处理快速到达的流式数据。
Transformer如何应用于时间序列预测一直是近期探讨的一个核心问题,这里包括多变量建模的处理方式、Transformer的结构等。在DLinear中,提出了用线性模型打败Transformer模型;在后来的PatchTST等工作中,又验证了Transformer的有效性。那么,到底如何使用Transformer进行时间序列预测效果最好呢?
该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去(随机)影响的值。ARIMAX模型是ARIMA模型的一个扩展版本。它还包括其他独立(预测)变量。该模型也被称为向量ARIMA或动态回归模型。
在处理时间序列项目时,数据科学家或 ML 工程师通常会使用特定的工具和库。或者他们使用一些众所周知的工具,而这些工具已被证明可以很好地适用与对应的时间序列项目。
最近,图神经网络技术应用到时间序列的分析,引起了学术界广泛的研究兴趣。本次文章分享两篇最近阅读的,图神经网络用于时间序列异常检测的论文。
最近我们被客户要求撰写关于向量自回归模型VAR的研究报告,包括一些图形和统计输出。
摘要:时间序列一般是指对某种事物发展变化过程进行观测并按照一定频率采集得出的一组随机变量。时间序列预测的任务就是从众多数据中挖掘出其蕴含的核心规律并且依据已知的因素对未来的数据做出准确的估计。由于大量物联网数据采集设备的接入、多维数据的爆炸增长和对预测精度的要求愈发苛刻,导致经典的参数模型以及传统机器学习算法难以满足预测任务的高效率和高精度需求。近年来,以卷积神经网络、循环神经网络和 Transformer 模型为代表的深度学习算法在时间序列预测任务中取得了丰硕的成果。为进一步促进时间序列预测技术的发展,综述了时间序列数据的常见特性、数据集和模型的评价指标,并以时间和算法架构为研究主线,实验对比分析了各预测算法的特点、优势和局限;着重介绍对比了多个基于 Transformer 模型的时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在的问题与挑战对未来该方向的研究趋势进行了展望。(文末附论文下载地址)
如果你正在处理时间序列数据,那么就跟云朵君一起学习如何根据预测性能来比较和选择时间序列模型。
时间序列分析中的时间序列分类(TSC)是关键任务之一,具有广泛的应用,如人体活动识别和系统监测等。近年来,深度学习在TSC领域逐渐受到关注,具有自动从原始时间序列数据中学习并抽取有意义特征的能力。
【导读】大家好,我是泳鱼。一个乐于探索和分享AI知识的码农!今天带来的这篇文章,提出了一种基于Transformer的用于长期时间序列预测的新方法PatchTST,取得了非常显著的效果。希望这篇文章能对你有所帮助,让你在学习和应用AI技术的道路上更进一步!
---- 新智元报道 编辑:LRS 【新智元导读】时间序列预测问题通常比普通机器学习更棘手,不仅需要维持一个增量数据库,还需要实时预测的性能。最近MIT的研究人员发布了一个可以通过SQL创建机器学习模型的数据库,不用再发愁时序数据管理了! 人类从历史中学到的唯一教训,就是人类无法从历史中学到任何教训。 「但机器可以学到。」 ——沃兹基硕德 无论是预测明天的天气,预测未来的股票价格,识别合适的机会,还是估计病人的患病风险,都可能对时间序列数据进行解释,数据的收集则是在一段时间内对观察结果的记录。
相比朴素法,就是考虑了季节性,也就是说将同期的最后一次观测值作为本期的预测值,比如预测本周的数值,那么就将上周的周一观测值作为本周的周一预测值,上周的周二观测值作为本周的周二预测值,以此类推。
---- 点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 新智元 授权 【导读】时间序列预测问题通常比普通机器学习更棘手,不仅需要维持一个增量数据库,还需要实时预测的性能。最近MIT的研究人员发布了一个可以通过SQL创建机器学习模型的数据库,不用再发愁时序数据管理了! 人类从历史中学到的唯一教训,就是人类无法从历史中学到任何教训。 「但机器可以学到。」 ——沃兹基硕德 无论是预测明天的天气,预测未来的股票价格,识别合适的机会,还是估计病人的患病风险,都可能对时间序列数据进行解释,数据的收集则是在
Transformer在自然语言处理和计算机视觉领域表现优秀,但在时间序列预测方面不如线性模型。
在过去的几个月中,时间序列基础模型的发展速度一直在加快,每个月都能看到新模型的发布。从TimeGPT 开始,我们看到了 Lag-Llama 的发布,Google 发布了 TimesFM,Amazon 发布了 Chronos,Salesforce 发布了 Moirai。TimesFM是信息最多的模型,而Lag-Llama、Chronos我们都做过详细的介绍。今天我们来详细介绍一下Moirai,这里可能最不知名(相对)就是Salesforce了,所以基本没有介绍 Moirai的文章,我们就来补足这个信息。
时间序列预测是机器学习中的一项常见的任务,具有非常广泛的应用,例如:电力能源、交通流量和空气质量等预测。传统的时间序列预测模型往往依赖于滚动平均、向量自回归和自回归综合移动平均。另一方面,最近有人提出了深度学习和矩阵分解模型来解决时间序列预测问题,并获得了更具竞争力的性能,但是该类模型往往过于复杂。
时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。我们的目标是指导设计师和从业者了解、构建应用程序,并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们介绍和讨论代表性研究成果,并介绍GNN4TS的主流应用。最后,我们全面讨论了潜在的未来研究方向。这项调查首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。
使用Python根据汇总统计信息添加新特性,本文将告诉你如何计算几个时间序列中的滚动统计信息。将这些信息添加到解释变量中通常会获得更好的预测性能。
用机器学习做时间序列异常检测 (TAD) 受到有缺陷的评估指标、不一致的基准测试、缺乏模型选择适当性论证的困扰。
时间序列预测,这玩意儿在数据分析界可是个香饽饽,尤其在电力、交通、空气质量这些领域里,预测得准,资源分配更合理,还能让相关部门提前做好准备。但深度学习这小子横空出世,开始抢传统统计学方法的风头。那么问题来了,时间序列预测非得用深度学习吗?咱们今天就来掰扯掰扯。
copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它 。
时间序列数据在各个领域都普遍存在,使得时间序列分析变得至关重要。传统的时间序列模型是任务特定的,具有单一的功能和有限的泛化能力。最近,大型语言基础模型揭示了它们在跨任务迁移性、零次/少次学习和决策可解释性方面的出色能力。这一成功引发了人们探索基础模型以同时解决多个时间序列挑战的兴趣。
领取专属 10元无门槛券
手把手带您无忧上云