首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

怎样在Python的深度学习Keras中使用度量

Keras提供了一种在训练深度学习模型时计算并报告一套标准度量的方法。 除了提供分类和回归问题的标准度量外,Keras还允许在训练深度学习模型时,定义和报告你自定义的度量。...教程概述 本教程分为4部分,分别是: 1.Keras的度量 2.Keras回归度量 3.Keras分类度量 4.Keras自定义度量 Keras的度量 Keras允许你列出在你的模型训练期间监控的度量。...在这两种情况下,度量函数的名称都用作度量值的密匙。在这种情况下对于验证数据集来说度量将“ val_ ”前缀添加到密钥。 损失函数和明确定义的Keras度量都可以用作训练度量。...Keras回归度量 以下是你可以在Keras中使用回归问题的度量列表。...你自定义度量函数必须对Keras内部数据结构进行操作,这些内部数据结构可能会因使用的后端不同而有所差别(例如,在使用tensorflow时为tensorflow.python.framework.ops.Tensor

2.5K80

TorchMetrics:PyTorch的指标度量

---- 作者:PyTorch Lightning team 编译:ronghuaiyang 来源:AI公园 导读 非常简单实用的PyTorch模型的分布式指标度量,配合PyTorch Lighting...函数版本实现了计算每个度量所需的基本操作。它们是作为输入的简单的python函数。并返回相应的torch.tensor的指标。下面的代码片段展示了一个使用函数接口计算精度的简单示例: ?...基于模块的度量的特点是有一个或多个内部度量状态(类似于PyTorch模块的参数),允许它们提供额外的功能: 多批次积累 多台设备间自动同步 度量算法 下面的代码展示了如何使用基于模块的接口: ?...每次调用度量的forward函数时,我们同时计算当前看到的一批数据上的度量值,并更新内部度量状态,以跟踪到目前为止看到的所有数据。内部状态需要在不同时期之间重置,不应该在训练、验证和测试之间混合。...update():任何需要更新内部度量状态的代码。 compute():从度量值的状态计算一个最终值。 例子:均方根误差 均方根误差是一个很好的例子,说明了为什么许多度量计算需要划分为两个函数。

3.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    opencv(4.5.3)-python(九)--性能度量和优化

    除了OpenCV之外,Python还提供了一个模块time,这对测量执行时间很有帮助。另一个模块profile有助于获得代码的详细报告,比如代码中每个函数花了多少时间,函数被调用了多少次,等等。...注意:Python的标量操作要比Numpy的标量操作快。所以对于包括一个或两个元素的操作,Python标量比Numpy数组更好。当数组的大小稍微大一点时,Numpy有优势。 我们将再试一个例子。...尽可能避免在Python中使用循环,特别是双倍/三倍循环等。它们本身就很慢。 尽可能地将算法/代码矢量化,因为Numpy和OpenCV是为矢量操作而优化的。 利用高速缓存的一致性。...如果你的代码在做完所有这些操作后仍然很慢,或者不可避免地要使用大的循环,请使用额外的,如Cython,使其更快。...额外的资源 Python优化技术 Scipy讲义--高级Numpy IPython中的计时和剖析

    50320

    机器学习相似性度量(距离度量

    度量相似性(similarity measure)即距离度量,在生活中我们说差别小则相似,对应到多维样本,每个样本可以对应于高维空间中的一个数据点,若它们的距离相近,我们便可以称它们相似。...距离度量的基本性质 ? 注意最后一个可以理解为三角形两边之和大于第三边。...欧式距离 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。...若我们定义的距离计算方法是用来度量相似性,例如下面将要讨论的聚类问题,即距离越小,相似性越大,反之距离越大,相似性越小。...这时距离的度量方法并不一定需要满足前面所说的四个基本性质,这样的方法称为:非度量距离(non-metric distance)。

    1.5K20

    PowerBI DAX 度量值管理 - 驾驭度量值依赖关系,删除无效

    上回写到:PowerBI DAX 度量值管理 - 基本编写到高级管理 很多小伙伴说跟着罗叔已经学习到了很多,一个报告写了几百个度量值了,现在想查找和删除没用的,怎么办呢。...度量值的依赖关系 度量值之间是有依赖关系的。...这样,对于 [Start:KPI.Sales],我们就不敢轻易删除,因为一旦这个度量值被删除,依赖他的度量值就都完犊子了。...所以,大家对删除一个度量值有恐惧感,是可以理解的。 检测度量值依赖关系 我们可以借助 PowerBI 外挂 Tabular Editor 来检测度量值的依赖关系,如下: ?...如果我们想考察谁依赖了当前的度量值,则可以选择第二项: ? 既然有这么多内容依赖于这个度量值,因此,是不能删除这个度量值的。 再例如: ? 对于这个度量值,没有任何人依赖它,就可以放心的删除了。

    1.3K30

    质量内建,如何度量

    可见,要想有效管理某个事务,就需要将它全面且有效地度量起来。 质量度量体系如何建设? 大家都知道作为测试人员,主要任务是质量保障,保障线上环境没有故障和缺陷,最终交付给真实用户的质量,即交付质量。...那么,质量度量是不是只关注交付质量指标就足够了呢?答案显然是否定的。因为如果只关注交付质量,往往达不到提升交付质量的目的。...二、交付过程中的质量度量 1、需求阶段,可以通过以下维度进行度量 一般来说,需求质量 Bug 数应该占总 Bug 数的 5% 左右。需求评审打回的标准可以是发现 5 个逻辑类的问题。...3、在测试阶段,可以通过以下维度进行度量 4、在发布阶段,可以通过以下维度进行度量 通常情况下,构建失败率和发布回滚率应该控制在 1% 以内,所以每一次发布失败和发布回滚都值得深入分析。...三、质量度量的认知 追求单一或局部指标的提升比较容易,但很容易产生扭曲行为,构建指标体系并整体提升才是正确的路。

    77620

    如何度量软件架构

    为什么要度量软件架构 不管是架构治理,还是团队管理,通过有效的度量都能找到问题并加以改进,指标也能反映改进后的效果。...“ 如果你无法度量它,你就无法管理它。...—— 彼得·德鲁克 ” 软件系统的维护者就是医生,指标度量的重要性不言而喻,一方面可以通过度量找到系统架构的问题,另一方面也可以通过度量,来指导改进并观察改进效果。...》中整理了一些论文中提到的软件架构衡量标准和颗粒度定义,参见下表: 图中给出的颗粒度包括包/类/方法,组件/,架构三大类,我在之前的文章 《架构优化方向》中,将架构优化分为四个大的方向:代码实现、组件设计...通过哪些指标度量软件架构 然而,值得强调的是,给出一套度量标准用来衡量所有的软件架构是不切实际的。

    39330

    机器学习距离度量方法

    机器学习中为什么要度量距离?...所以度量距离是很多算法中的关键步骤。 KNN算法中要求数据的所有特征都用数值表示。若在数据特征中存在非数值类型,必须采用手段将其进行量化为数值。...每个特征都用数值表示,样本之间就可以计算出彼此的距离来 接下来介绍几种距离度量方法 2. 欧式距离 3. 曼哈顿距离 4....闵式距离 闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。...小结 欧式距离、曼哈顿距离、切比雪夫距离是最常用的距离 闵式距离是一组距离的度量,当 p = 1 时代表曼哈顿距离,当 p = 2 时代表欧式距离,当 p = ∞ 时代表切比雪夫距离

    15310
    领券