同样的 x 变量和 y 变量,描述的同样的数据,可以用散点图和平滑曲线图,从中都可以看出数据的趋势,ggplot中可以很容易的将这两个图结合在一张图上。...# 散点图 ggplot(data = iris) + geom_point(mapping = aes(x = Sepal.Length, y = Sepal.Width)) ?...image.png # 拟合曲线 ggplot(data = iris) + geom_smooth(mapping = aes(x = Sepal.Length, y = Sepal.Width...iris,mapping = aes(x = Sepal.Length, y = Sepal.Width)) + geom_point() + geom_smooth() 散点图按颜色分组是没有任何问题的...image.png 注意, 如果拟合曲线分组的话,就不是原来的一条曲线,而是按分组拟合 ggplot(data = iris,mapping = aes(x = Sepal.Length, y = Sepal.Width
散点图一般用于展示两个变量之间的关系(比如线性相关)例如两个基因表达量的相关性。 cor.test(data ?
在python中画散点图主要是用matplotlib模块中的scatter函数,先来看一下scatter函数的基本信息。...数据(取第一列作为x,取第四列作为y)截图: 代码如下: import matplotlib.pyplot as plt import numpy as np # 定义画散点图的函数 def...Result Analysis') # 设置横坐标名称 ax1.set_xlabel('gamma-value') # 设置纵坐标名称 ax1.set_ylabel('R-value') # 画散点图
今天这篇推文小编写一些基础的内容:如何绘制在散点图上显示其线性模型线性模型的拟合结果及其置信区间。...这里小编使用R和Python分别绘制,主要内容如下: R-ggplot2::geom_smooth()函数绘制 Python-seaborn::lmplot()函数绘制 R-ggplot2::geom_smooth...ggplot2::geom_smooth(method = 'lm') 可以看出:使用ggpubr::stat_regline_equation() 和ggpubr::stat_cor() 分别添加了拟合公式和...Python-seaborn::lmplot()函数绘制 这里小编使用了Python-seaborn库中的lmplot()函数进行绘制,详细如下: 「样例一」:单一类别 import seaborn as...以上就是简单的介绍如何使用R和Python绘制带有拟合区间的散点图,更多详细资料可参考:ggplot2::geom_smooth()[1]seaborn.lmplot()[2] 总结 本期推文小编简单介绍了如何绘制在散点图上显示其线性模型线性模型的拟合结果及其置信区间
图形展示 图形解读 ❝此图使用经典的企鹅数据集进行展示,在散点图的基础上按照分组添加拟合曲线及回归方程与R,P值,后使用ggExtra添加密度曲线与数据分布直方图,使用已有R包进行绘制非常的方便,此图大概有以下几点注意事项...❞ 1.拟合曲线的添加 ❝拟合曲线的添加在R中常用的大概有两个函数geom_smooth与ggmpisc::stat_poly_line。两者均可用于在R图形中添加平滑线或拟合线,需要选择正确的模型。...这个函数直接计算多项式回归模型,并将拟合线添加到图形上。它允许指定多项式的阶数,即回归方程中最高次项的次数。可直接在图形上添加拟合线,而不是基于数据点的平滑。...它可以自动选择平滑参数,还可以显示拟合线周围的置信区间。 回归方程的添加 ❝stat_poly_eq:用于添加多项式回归方程和相关统计量(如 R2、p 值等)的标签。...flipper_length_mm, bill_length_mm, color=species)) + geom_point(aes(size = body_mass_g), alpha = 0.5) + # 添加散点图层
scipy.optimize 模块的 curve_fit 函数可以用于曲线/曲面拟合。...曲线拟合示例: import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit def...x = np.linspace(0,3,100) y = func(x,2.5,1.3,0.5) yn = y+0.1*np.random.normal(size=len(x)) # 曲线拟合...color='b',label='raw data') plt.plot(x, func(x,*popt), "r-", label='fit') plt.legend() plt.title("曲线拟合...") plt.show() 曲面拟合示例: import numpy as np from scipy.optimize import curve_fit from mpl_toolkits.mplot3d
上篇文章介绍了使用matplotlib绘制折线图,参考:Python matplotlib绘制折线图,本篇文章继续介绍使用matplotlib绘制散点图。...可以传入很多参数,一般传入两个列表,分别是散点图中的x值和y值。上面的例子中使用2009年至2019年这十一年天猫双11的总成交额数据。 散点图根据提供的两组数据,构成图形中的多个坐标点。...上面的代码已经实现了简单的散点图,但只把点绘制出来了,很多信息都不完整,所以需要进行优化。...使用title()设置散点图的标题,说明散点图展示的数据。使用legend()将图例展示出来。 经过优化,一张基本功能完整,信息完整的散点图就完成了。...,为了使数据展示效果更好,可以对散点图进行美化。
学习R语言ggplot2包画散点图,然后分组添加拟合曲线。对应的是论文中的Figure2 ?...查看数据维度 crass_impact <- read.table("data/crass_impact.txt") dim(crass_impact) head(crass_impact) 最基本的散点图...添加拟合曲线 ggplot(crass_impact,aes(x=rel_crAss,y=rel_res,color=country))+ geom_point(aes(shape=crAss_detection
引言 本期推文的主要内容是散点图的绘制教程,所使用的数据关于全球教育水平划分的师生比例,涉及到的包主要为matplotlib和seaborn,当然用于数据处理分析的pandas和 numpy也必不可少...数据处理 2.1 原始数据 本文涉及的数据主要包括两种,一种为全球各大洲的网格数据,用于绘制另类散点图例,一种为全球各州的教育水平的师生比例,用于散点图的绘图。...(3)绘制大散点图 region_y = { 'Africa':1, 'Oceania':2, 'Asia':3, 'South America':4, 'North...可视化绘制 本文的可视化绘制过程涉及seaborn的stripplot()方法,所需的库、总体设置及用于绘制“抖动”的散点图(类似ggplot2的position_jitter()),其目的就是为了防止散点重叠...如果没用采用地图图例的绘制,而是一般的散点图图例,效果如下: ?
由于最近在做数据分析时用到了,然而看了一些博客,要么是qq图讲解的比较详尽但是没有使用Python;要么是使用Python语言但是没有讲清楚原理。...基于此,想写一篇博客尽量讲清楚原理并且用Python实现出来。 qq图原理是比较两组数据的累计分布函数来判断两组数据是否是服从同一分布,所以第一步我们应该做两组数据的累计分布。...上面是为了说明qq图的原理以及怎么使用pyhton进行手动操作,作为数据分析领域里比较全能的Python,它当然也是有包可以直接绘制qq图。...参考文献: https://stackoverflow.com/questions/3209362/how-to-plot-empirical-cdf-in-matplotlib-in-python https...://stats.stackexchange.com/questions/139708/qq-plot-in-python https://docs.scipy.org/doc/scipy-0.16.0
主要涉及内容如下: Python-matplotlib 散点图绘制 文本条件添加 Python-matplotlib 散点图绘制 本篇推文的原始图片还是来自于PIIE网站的一篇文章配图,文章的插图如下...总结 本期推文我们进行商业图表第7弹的绘制,学习了散点图系列的绘制方法,此外,颜色的配置也是值得参考和学习的。大家可以直接关注公号:DataCharm,直接获取EXCEL颜色主题xml文件。
用散点图可以直观的查看数据的分布情况。 matplotlib模块的pyplot有画散点图的函数,但是该函数要求x轴是数字类型。...pandas的plot函数里,散点图类型'scatter'也要求数字型的,用时间类型的会报错。在搜索阅读了几十篇网文后,摸索出画散点图的简单办法。...可以使用pyplot的plot_date()画散点图。...下面是完整的python代码: # -*- coding: utf-8 -*- """ speed1219.csv data file format:
引言 这篇推文还是python-matplotlib 散点图的绘制过程,涉及到的内容主要包括matplotlib ax.scatter()、hlines()、vlines()、text()、添加小图片和定制化散点图图例样式等...season],lw=.8,zorder=2) (3)第56-60行 图片的插入,代码如下: img = image.imread(r'E:\Data_resourses\DataCharm 公众号\Python...(4)第64-76行 对散点图图例的定制化设置。...4500', '6000', '7500'] for i, label in enumerate(labels): legend.get_texts()[i].set_text(label) 是对散点图例...总结 本片绘制推文还是灵活的使用python-matplotlib进行散点图的绘制,主要涉及的绘图技巧为:ax.scatter()、 hlines()、 vlines() 以及散点图例的定制绘制,其目的就是为了熟悉绘图技巧
参考链接:https://blog.csdn.net/m0_67790374/article/details/124137448
关系(一)利用python绘制散点图 散点图 (Scatterplot)简介 1 在笛卡尔座标上放置一系列的数据点,检测两个变量之间的关系,这就是散点图。...散点图可以了解数据之间的各种相关性,如正比、反比、无相关、线性、指数级、 U形等,而且也可以通过数据点的密度(辅助拟合趋势线)来确定相关性的强度。...line_kws={"color":"r","alpha":0.7,"lw":5},ax=ax[0][0]) ax_sub.set_title('增加趋势拟合线...COLORS[i]) handle.set_hatch(hatches[i]) handle.set_alpha(0.7) ax.set_title('自定义图例') # 4、回归拟合线...= plt.subplot2grid((2, 2), (1, 1), colspan=1) ax.scatter(x, y, s=60, alpha=0.7, edgecolors="k") # 拟合
上期推文推出第一篇基础图表绘制-R-ggplot2 基础图表绘制-散点图 的绘制推文,得到了很多小伙伴的喜欢,也是我更加想使这个系列做的更加完善和系统,我之前也有说过,会推出Python和R的两个版本绘制教程...,接下来我们就推出基础散点图的Python绘制版本。...本期主要涉及的知识点如下: Python-seaborn 绘制多类别散点图 seaborn 定制化美化设置 Python-seaborn 绘制多类别散点图 由于涉及的图表类型为多类别散点图的绘制,在使用常规...scatter.set_xlabel("Bill length (mm)") scatter.set_ylabel("Bill depth (mm)") #添加标题 ax.text(-.08,1.1,"Base Charts in Python...总结 本期推文我们推出了基础散点图的Python绘制版本,希望可以满足喜欢使用Python绘图的小伙伴。大家有啥意见也可以在文末 读者讨论 区进行谈论交流啊。
1 问题 利用python如何绘制直方图和散点图。...alpha=0.7)plt.xlabel("区间") # X轴标签plt.ylabel("频率") # Y轴标签plt.title("频率分布直方图") # 标题plt.show()# ------ 散点图...149, 174, 184, 193, 198, 202, 200]plt.scatter(x, y, c='r') # x,y值,点颜色plt.show()运行结果(1)(2) 3 结语 对于用python...进行绘制直方图和散点图。
引言 上期的推文Python-matplotlib 学术型散点图绘制 推出后,很多小伙伴比较喜欢 ? ?...绘制上下误差线 学术性相关性散点图还需添加拟合最佳上线(upper line)和下线(bottom line),而两者的绘制依据为1:1 最佳线和误差 Δτ= ± (0.05+0.15 True data...基于此,我们绘制误差线的关键代码如下: #用于绘制最佳拟合线 x2 = np.linspace(-10,10) y2=x2 #绘制upper line up_y2 = 1.15*x2 + 0.05 #...合并多图 python-matplotlib绘制多子图的方法也比较简单,下面就将黑白散点和彩色散点图同时绘制,避免后期排版操作。具体代码如下: ? 结果如下: ? 05....(该图片来源于网络,如侵权,望告知删除) python-matplotlib 绘制这类相关性散点图也比较简单,核心代码如下: #网格设置 ax.grid(which='major',axis='y'
领取专属 10元无门槛券
手把手带您无忧上云