思路:既然输入n是uint32,每次取n的最低位,判断是不是1,位移32次,循环判断即可。
保护密码的最好方法是使用加盐哈希; 哈希算法 哈希算法是一种单向函数,把任意数量的数据转换成固定长度的“指纹”,这个过程无法逆转。如果输入发生一点改变,由此产生的哈希值完全不同。 基于哈希加密账号系统中,用户注册和认证的大致流程如下: 用户创建自己的账号; 密码经过哈希加密后存储在数据库中。密码一旦写入磁盘,任何时候都不允许明文形式; 用户试图登录时,系统从数据库取出已经加密的密码,和经过哈希加密的用户输入的密码进行对比; 如果哈希值相同,用户将被授权访问。否则,告知输入登录信息无效; 只有加密哈希函数才可
在实际的软件开发中,状态模式并不是很常用,但是在能够用到的场景里,它可以发挥很大的作用。从这一点上来看,它有点像我们之前讲到的组合模式。
《Redis设计与实现》读书笔记(三十五) ——Redis 二进制位数组及SWAR汉明重量算法 (原创内容,转载请注明来源,谢谢) 一、基本概念 redis提供了setbit、getbit、bitcount、bitop四个命令用于处理二进制数组,称为bit array,又叫位数组。 setbit命令用于位数组指定偏移量上的二进制设置值,偏移量从0开始计算,值可以是0或者是1。 getbit获取指定位置上的值。 bitcount统计位数组里面,值为1的二进制位的数量。 bitop可以有and、or、xor,即
(2)结合所设计的电路图说明该电路的设计思路和过程,通过计算得到该电路的理论截至频率值,计算误差。 设计思路: 需要满足题目要求的通带增益0dB,3dB截至频率20Hz~20kHz,则需要构造二阶带通滤波器。二阶带通滤波器由一个VCVS式二阶低通滤波器和一个VCVS式二阶高通滤波器构成,二阶低通滤波器确定上限3dB截止频率为20kHz,二阶高通滤波器决定下限3dB截止频率为20Hz。 设计过程: 由查表法可以分别确定出低通滤波器和高通滤波器的各元器件值如下图: 二阶低通滤波器查表:
我们的项目如果是使用flask框架开发的话,那么可以使用flask中提供的安全模块,将密码进行加密。这样做的好处是保障用户信息安全,要不然公司内任何一个程序员都可以从数据库查询到相关的私密敏感信息,如果发生泄漏,后果不堪设想。这只是一种小概率事件,那么大概率事件是什么呢?如果网站做的足够大,用户群体十分庞大,那么肯定会有一些不法分子会入侵,攻破网站盗取数据啊,如果我们加密之后,是不是就安全多了呢?
7788的术语我就不多说了,简而言之,就是一种破解md5或者sha1这种哈希散列算法的一种办法。
3.init初始化函数,在每个文件中的init初始化函数,在程序开始执行时按照它们声明的顺序被自动调用
编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。
由查表法得到R5=1.422KΩ,R6=5.399KΩ,C4=6500pF,C1=1588pF;C2=4uF,C3=7uF,R7=2.251KΩ,R8=1.125KΩ。
有限状态机,英文翻译是 Finite State Machine,缩写为 FSM,简称为状态机。状态机有 3 个组成部分:状态(State)、事件(Event)、动作(Action)。其中,事件也称为转移条件(Transition Condition)。事件触发状态的转移及动作的执行。动作也不是必须的,也可能只转移状态,不执行任何动作。
上次搞的暗通道去雾的算法交给老师就算是交差了,当时也就是个调研而已。前几天又被老师叫过去说还是需要720p(1280*720)图像的实时处理,看能不能再做一些优化,让我和一个职工商量着来,于是又看了两天的去雾。还是有一些进展,总结一下。
涉及身份验证的系统都需要存储用户的认证信息,常用的用户认证方式主要为用户名和密码的方式,为了安全起见,用户输入的密码需要保存为密文形式,可采用已公开的不可逆的hash加密算法,比如SHA256, SHA512, SHA3等,对于同一密码,同一加密算法会产生相同的hash值,这样,当用户进行身份验证时,也可对用户输入的明文密码应用相同的hash加密算法,得出一个hash值,然后使用该hash值和之前存储好的密文值进行对照,如果两个值相同,则密码认证成功,否则密码认证失败。
LCNN: Lookup-based Convolutional Neural Network CVPR2017 https://github.com/ildoonet/tf-lcnn https://github.com/hessamb/lcnn
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna。
* 本文原创作者:zzz66686,本文属FreeBuf原创奖励计划,未经许可禁止转载 1. 引言 AES算法,即高级加密标准,在密码学中又称为Rijndael加密算法。该算法已被用来替代原先的DES算法,并在世界范围内广泛使用。需要指出的是,AES算法不仅仅在合法的场合有着广泛的运用,在各种勒索软件等恶意程序中,同样有着广泛的应用。 本文将分为三部分介绍恶意代码中的AES算法,分别是: 1.基本AES算法的逆向识别; 2.Locky勒索软件中的AES算法识别; 3.TeslaCrypt勒索软件中AES算法
策略模式。在实际的项目开发中,这个模式也比较常用。最常见的应用场景是,利用它来避免冗长的 if-else 或 switch 分支判断。不过,它的作用还不止如此。它也可以像模板模式那样,提供框架的扩展点等等。对于策略模式。本篇我们讲解策略模式的原理和实现,以及如何用它来避免分支判断逻辑。后续我会通过一个具体的例子,来详细讲解策略模式的应用场景以及真正的设计意图。话不多说,进入主题
在嵌入式项目开发中,LED灯的操作是一定要会的,也是基础中的基础,比如用51单片机写个跑马灯,这不简单嘛,定义一个数组把那8个跑马灯存起来,然后搞个for循环不就可以了嘛,但是,实际工作开发中写一个跑马灯可不像学校和书本上那么简单噢,往往最简单的东西,有可能也是最复杂的。
如果你问这么无聊的问题有意义吗?那我猜测你一定不太喜欢数学。这类问题其实是对具体问题的一种抽象,比如计算机只认识二进制的 0 和 1,这两个 0 和 1 经过运算和转换,却能表达整个世界。你也许认为人工智能非常高大上,而在我眼里,不过是 if、else、循环的组合罢了。因此不要忽视此类看似没有意义的问题,仔细思考并试着回答,可以训练我们的计算机思维。
《西奥蒂尼社会心理学》揭开了自我、环境、群体之间看不见的影响力。“ 行为背后的目的到底是什么?” 与 “ 目的背后的人和环境发挥了怎样的作用?” 是社会心理学探究的两大核心问题。所以我们将以心理学为舟,争取深入浅出统计学中最基础的概念 —— Z 分数。
在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。
大家都知道,不管什么系统,只要有用户登录模块的,必然在系统数据库中会存有用户的用户名和密码。用户名明文存储完全没有问题,这里我们就谈谈如何正确地来存储用户的密码。
MOVC A, @A + PC MOVC A, @A + DPTR 问题:在“MOVC A,@A+DPTR”和“MOVC A,@A+PC”中,分别使用了DPTR和PC作基址,请问这两个基址代表什么地址?使用中有何不同? 答案: 使用@A+DPTR基址变址寻址时,DPTR为常数且是表格的首地址,A为从表格首址到被访问字节地址的偏移量。 使用@A+PC基址变址寻址时,PC仍是下条指令首地址,而A则是从下条指令首地址到常数表格中的被访问字节的偏移量。
利用MOVCA,@A+PC指令编写一查平方表程序, 将片内30H~31H内的数查平方后送入40H~49H单元, 30H~39H预先存入数据为1,3,5,7,9,2,4,6,8,10. org 0000h mov 30h, #1 mov 31h, #2 mov 32h, #3 mov 33h, #4 mov 34h, #5 mov 35h, #6 mov 36h, #7 mov 37h, #8 mov 38h, #9 mov 39h, #10 call SQRT sjmp $ 查表法求平方的程序如下。 SQRT: MOV R0, #30H MOV R1, #40H MOV R2, #10 LOOP: MOV A, @R0 ;1 byte ADD A, #S_TAB - ($ + 4) ;2byte MOVC A, @A + PC ;1byte MOV @R1, A ;1byte INC R0 ;1byte INC R1 ;1byte DJNZ R2, LOOP ;2byte RET ;1byte S_TAB: DB 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 end
简称状态机, 由三部分组成:状态、事件、动作。事件触发状态转移,执行动作(非必须)。
题意 实现一个算法确定字符串中的字符是否均唯一出现 样例 给出 "abc",返回 true 给出 "aab",返回 false 思路 解法一:可以利用查表法,首先建立一个大小为 256 位的布尔类型的数组,因为 ASCII 表中一共就有 256 的字符,依次取字符串中的每一个位,将其在 ASCII 表中的位置放到数组中,True 表示该字符已存在,Flase 则表示该字符不存在。 解法二:不利用额外空间的话,就将当前位与剩余位依次进行比较才能实现,比较消耗时间。 代码实现 解法一 public class
本设计需要实现8个LED灯的点亮与熄灭。LED(发光二极管)正极接+5V电源,负极接单片机P1口,这样只要单片机P1口输出高低电平就可以导通二极管,实现LED灯的点亮与熄灭。
包含电芯、电量计IC、保护IC、充放电MOSFET、保险丝FUSE、NTC 等元件。一级保护IC 控制充、放电MOSFET,保护动作是可恢复的,即当发生过充、过放、过流、短路等安全事件时就会断开相应的充放电开关,安全事件解除后就会重新恢复闭合开关,电池可以继续使用。一级保护可以在高边也可以在低边。二级保护控制三端保险丝,保护动作是不可恢复的,即一旦保险丝熔断后电池不能继续使用,又称永久失效(Permanent Failure, PF)。电量计IC采集电芯电压、电芯温度、电芯电流等信息,通过库仑积分和电池建模等计算电池电量、健康度等信息,通过I2C/SMBUS/HDQ 等通信端口与外部主机通信。
最近做一个网站,网站需要用户登录注册,自然也就需要一套高扩展性的用户模块设计,该篇文章记录笔者遇到问题的解决方案,希望对你有帮助。
手机屏幕帧率一般为60 FPS,也就是说一帧的渲染时间为16.7ms,所以如果页面渲染时间超过16.7ms 容易出现卡顿现象。提高页面渲染效率可以考虑如下方法:
作者:挂枝儿 原文:https://zhuanlan.zhihu.com/p/110886609
上次Ansta留给自己的作业是: Sashelp逻辑库中有一个关于GNP的数据sashelp.gnp,要求用1961、1962、1963三年的数据建立回归模型: GNP = consump +
本质上所有软件系统就是一组策略语句的集合。每一段代码都是策略。软件架构设计的重点工作之一就是,将这些策略彼此分离,然后按照变更要求进行分组。其中变更原因,频率层次相同的策略应该被分到一个组件中。反之,就不该放到一个组件中。
测试条件: 1、MDK5.33 AC5 ,开启最高等级三级优化,开启时间优化 2、测试平台自制H730VBT板子。 3、工作主频550MHz。 4、开启硬件双精度。 5、开启硬件三角函数。 测试: 1、H730硬件三角函数。 开启20bit最高测试精度,对应6个时钟周期24次迭代。注意这里的时钟周期是相对Cordic来说的,由于Cordic是在550MHz主频的二分频下工作,所以实际测试应该是12个时钟周期完成一次三角函数计算。 这里计算了10000次sin,DMA方式。 最终需要时钟周期是200506个,也就是20个时钟周期计算一次,即36ns一次计算,这个速度还是相当给力的。 正常情况下的理论值应该是12个时钟周期就计算完毕,额外的8个时钟周期耽误在DMA等传输上了。
关系型数据库的事务特性可以帮我们解决很多难题,比如数据的一致性问题,所以常规业务持久化存储都会mysql 来兜底。但mysql 的性能是有限的。当业务规模发展到上百万用户,访问量达到上万QPS时,单台mysql实例很难应付。
咱们的SAS矩阵交互语言IML就要完结了,本文将会用IML编一个回归程序。无论你需要一元的还是多元的回归模型,该程序都能计算出模型的系数、t检验以及t检验的p值、F检验以及F检验的P值、R2。 本文会综合用到前面几节的内容(回复【SASIML】查看全部): 入门 | SAS里的平行世界 函数 | 函数玩一玩 编程 | IML的条件与循环 模块 | 5分钟懂模块 穿越 | 矩阵与数据集的穿越 作业 | 编一个SAS回归软件 如果前面都没有看过,没关系,根据下面的代码提示,翻阅相关内容,可以把五集的内容
判断一个单向链表是否有环。(指向表头结点的指针为head) 方法一: (1)用两个指针p1和p2分别指向表头结点,即p1=p2=head (2)p1和p2分别采用1和2作为步长遍历该链表。(注意,p2应该检查当前结点的下一个结点是否为NULL) (3)如果p1或者p2遇到了NULL,则证明该链表没有环;若p1和p2在某时刻指向同一结点,则说明该链表有环。 bool I***itsLoop(slist * head) { slist * slow = head , * fast = head; while
继续优化技术的探索,今天以一个的Sobel算子进行边缘检测的算法为例来看看如何使用SSE指令集对其进行优化。
51单片机开发板,功能模块独立性高,能够实现各种各样的功能。本文中,主要使用热敏电阻和数码管完成了对环境实时温度的显示。
05.01_Java语言基础(数组概述和定义格式说明) A:为什么要有数组(容器) B:数组概念 C:数组定义格式 数据类型[] 数组名 = new 数据类型[数组的长度]; 05.02_Java语
CRC(Cyclic Redundancy Check),即循环冗余校验码,是通信领域中一种常用的数据校验码,通过一定算法,将计算结果附在数据后面一起进行传输,对传输的数据具有检错功能。
在面试环节中,面试官很喜欢问一些特别的题目,这些题目有着特殊的解法,如果回答的巧妙往往能在面试中加分。
个人真的很喜欢这本书, 从对C语言一窍不通, 到发现C语言竟然如此简洁, 以至于我喜欢上了C! 对此前面的底层数据结构也读了几次, 大致整理了书里的内容, 后面的就粗略看了一下, 不再细细整理了.
单单具有任务切换功能自然不能称之为RTOS Kernel,一个任务往往具有多个重要的属性,优先级就是其中之一。一个任务的优先级决定了它的“尊贵”程度,越尊贵的任务越有优先占用CPU运行的权力。
声明:本文为原创,作者为 对弈,转载时请保留本声明及附带文章链接:http://www.duiyi.xyz/c%e5%ae%9e%e7%8e%b0%e9%9b%b7%e9%9c%86%e6%88%98%e6%9c%ba-12/
这种方法其实是在一开始只查询出parent_id=0的所有任务,然后采用递归的方式,动态生成查询条件,然后把每条记录的task_id又作为task_id,这样又进行新一轮的查询,知道查询结果为空。
上来先推荐一本书,《计算机体系结构:量化研究方法(第五版)》,英文能力比较好的建议阅读原版。
升级方案就是对密码进行加密后存储,这样就避免了明文存储的问题。使用什么方式加密呢?比如我们常使用的MD5算法,但这样就是安全的了吗?此处需要再了解几个概念
彩虹表(Rainbow Table)是一种破解哈希算法的技术,是一款跨平台密码破解器,主要可以破解MD5、HASH等多种密码。它的性能非常让人震惊,在一台普通PC上辅以NVidia CUDA技术,对于NTLM算法可以达到最高每秒103,820,000,000次明文尝试(超过一千亿次),对于广泛使用的MD5也接近一千亿次。更神奇的是,彩虹表技术并非针对某种哈希算法的漏洞进行攻击,而是类似暴力破解,对于任何哈希算法都有效。
领取专属 10元无门槛券
手把手带您无忧上云