作者:Eryk Lewinson 翻译:张睿毅校对:张睿毅 本文约4200字,建议阅读10分钟本文我们主要使用非常知名的Python包,以及依赖于一个相对不为人知的scikit-lego包。 标签:数据帧, 精选, 机器学习, Python, 技术演练 设置和数据 在本文中,我们主要使用非常知名的Python包,以及依赖于一个相对不为人知的scikit-lego包,这是一个包含许多有用功能的库,这些功能正在扩展scikit-learn的功能。我们导入所需的库,如下所示: import n
作者:Eryk Lewinson 翻译:汪桉旭校对:zrx 本文约4400字,建议阅读5分钟本文研究了三种使用日期相关的信息如何创造有意义特征的方法。 标签:时间帧,机器学习,Python,技术演示 想象一下,你刚开始一个新的数据科学项目。目标是建立一个预测目标变量Y的模型。你已经收到了来自利益相关者/数据工程师的一些数据,进行了彻底的EDA并且选择了一些你认为和手头上问题有关的变量。然后你终于建立了你的第一个模型。得分是可以接受的,但是你相信你可以做得更好。你应该怎么做呢? 这里你可以通过许多方式跟进。
[PaddleFluid小试牛刀]练习二·DNN正弦函数拟合 在上篇博文基础上做了些改进,拟合正弦曲线 生成数据 code from paddle import fluid as fl import numpy as np import matplotlib.pyplot as plt def get_data(x): c,r = x.shape y = np.sin(x*3.14)+1+ (0.02*(2*np.random.rand(c,r)-1)) return(y) xs
参见 textbook p4-12。完成以下任务: (1) 生成正弦序列 s(n); (2) 使用噪声函数对正弦序列加噪 x(n)=s(n)+w(n); (3) 使用多项式回归模型对 x(n)进行拟合,并分析过拟合和欠拟合情况
在建模问题或项目中,通常情况下,可接受模型的函数形式会以某种方式受到约束。这可能是由于业务考虑,或者由于正在研究的科学问题的类型。在某些情况下,如果对真实关系有非常强烈的先验信念,可以使用约束来提高模型的预测性能。
诸如xgboost之类的梯度提升算法是表格数据中表现最佳的模型之一。与其他模型(如随机森林)一样,梯度提升属于集成模型的范畴。该名称来源于该范畴的一个核心特征:它们不适应单个大模型,而是适应一个由多个模型组成的整体模型集合。集成模型与基础函数的概念密切相关。两者都使用较简单的构建块,这些构建块组合在一起以解决更复杂的问题。
Python 已成为最受欢迎的编程语言之一,它在实用性、易学性和生态系统方面具备独特优势。本博客将深入探讨 Python 在各个领域的实际应用,以及它的库、框架和工具的丰富生态系统。通过具体实例,展示 Python 的强大功能和灵活性,让您深刻理解为什么它荣登第一编程语言的宝座。
在计算傅里叶变换之前对信号去趋势是一种常见的做法,特别是在处理时间序列时。在这篇文章中,我将从数学和视觉上展示信号去趋势是如何影响傅里叶变换的。
这个非线性激活函数效果比 ReLU 还好?近日,斯坦福大学的一项研究《Implicit Neural Representations with Periodic Activation Functions》进入了我们的视野。这项研究提出利用周期性激活函数处理隐式神经表示,由此构建的正弦表示网络(sinusoidal representation network,SIREN)非常适合表示复杂的自然信号及其导数。
大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?
符号回归(Symbolic Regression)作为一种一种监督学习方法,试图发现某种隐藏的数学公式,以此利用特征变量预测目标变量。符号回归的优点就是可以不用依赖先验的知识或者模型来为非线性系统建立符号模型。符号回归基于进化算法,它的主要目标就是利用进化方法综合出尽可能好的解决用户自定义问题的方法(数学公式,计算机程序,逻辑表达式等)。
下图就是一些我们经常使用的激活函数,从这些激活函数的图像可以看出它们有的是局部线性的有的是非线性的,有的是一个函数表达式下来的,有的是分段的。但其表达式好像都不是很常见,给人一种应凑的感觉有没有?
如果只有一组实验数据,则按照普通的方法在Worksheet中分别输入X,Y的值,然后用“线+符号”的方式绘图即可。
来源: DeepHub IMBA本文约2300字,建议阅读8分钟在本文中,通过一个实际示例讨论如何从 DateTime 变量中提取新特征以提高机器学习模型的准确性。 特征工程是构建机器学习模型最重要的方面之一。在本文中,我将通过一个实际示例讨论如何从 DateTime 变量中提取新特征以提高机器学习模型的准确性。 从日期中提取特征 一些数据集提供了日期或日期时间字段,通常在为机器学习模型构建输入特征时会被删除(除非您正在处理时间序列,显然 😃)。 但是,DateTime 是可用于提取新特征的,这些新特征
【摘要】 1 GMM基础高斯混合模型(GMM)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。为什么GMM可以拟合出任意类型的分布?不仅GMM可以,只要性质不太奇怪的混合模型一般都能近似任意分布。这个思想和泰勒展开、傅里叶变换是类似的,任何波形都可以用正弦波叠加表示,而且频率还是基频的整数倍。利用高斯混合模型进行聚类,本质上...
多项式拟合函数:polyfit。该函数的结果将保证在数据点上拟合值与数据值差的平方和最小,即最小二乘曲线拟合。 调用格式: polyfit(X,Y,n) 执行该函数将产生一个n阶多项式P,并且使得P(X)=Y。
An open source machine learning framework that accelerates the path from research prototyping to production deployment.
GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb
本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预测分析任务的起点。但我们不可夸大线性模型(快速且准确地)拟合大型数据集的重要性。如本文所示,在线
选自Medium 作者:Tirthajyoti Sarkar 机器之心编译 参与:晏奇、刘晓坤 本文中,作者讨论了 8 种在 Python 环境下进行简单线性回归计算的算法,不过没有讨论其性能的好坏,而是对比了其相对计算复杂度的度量。 GitHub 地址:https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb 对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预
本文从非线性数据进行建模,带你用简便并且稳健的方法来快速实现使用Python进行机器学习。
作者:Krzysztof Pałczyński 翻译:王闯(Chuck) 校对:zrx 特征工程可以弥补数据的不足。 在快速发展的人工智能 (AI) 世界中,数据已成为无数创新应用和解决方案的命脉。实际上,大型数据集通常被认为是训练强大且准确的 AI 模型的支柱。但是,当手头的数据集相对较小时该怎么办呢?在本文中,我们将探讨特征工程在克服小数据集的局限性方面所起到的关键性作用。 玩具数据集 我们的旅程将从创建数据集开始。在这个例子中,我们将进行简单的信号分类。该数据集有两个类别:频率为1的正弦波属于类别0
作者:章华燕 编辑:黄俊嘉 决策树在学习应用中非常有用,接下来给大家分享一下自己有关于决策树的一些想法! 决策树概述 决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特
人类不会每听到一个句子就对语言进行重新理解。看到一篇文章时,我们会根据之前对这些词的理解来了解背景。我们将其定义为记忆力。
明义:按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。对时间序列进行观察,研究,寻找它变化发展的规律,预测它将来的走势,就是时间序列分析。
(1) plot是标准的绘图库,调用函数plot(x,y)就可以创建一个带有绘图的图形窗口(其中y是x的函数)。输入的参数为具有相同长度的数组(或列表);或者plot(y)是plot(range(len(y)),y)的简写。
專 欄 ❈那只猫,Python中文社区专栏作者,福州大学大二水利专业学生,纯种非CS科班的数据分析师,熟练掌握Python数据分析大礼包,因长时间玩弄Keras而陷入深度学习的大坑中不能自拔。❈— 今天,谷歌联合Columbia University、Adobe(就是你们知道的那个Adobe)提出深度概率编程语言Edward,我就其发布Edward的专业论文,给大家介绍一下,这个秒天秒地秒空气的牛逼哄哄的新语言(框架)。 为什么开发Edward? 因为现在的概率编程语言啊, Too Young!Too S
一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。 2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。 3、功能键: 功能键 快捷键 说明 方向上键 Ctrl+P 返回前一行输入 方向下键 Ctrl+N 返回下一行输入 方向左键 Ctrl+B
Transformer模型是否能够超越预训练数据范围,泛化出新的认知和能力,一直是学界争议已久的问题。
本文介绍了机器学习中的决策树算法,包括基本概念、原理、优缺点以及决策树的应用场景。同时,还介绍了scikit-learn库中的决策树实现,以及如何使用该库进行机器学习。
二值神经网络(BNN)将原始全精度权重和激活用符号函数表征成 1-bit。但是由于常规符号函数的梯度几乎处处为零,不能用于反向传播,因此一些研究已经提出尝试使用近似梯度来减轻优化难度。然而,这些近似破坏了实际梯度的主要方向。
X = ifft(Y) 使用快速傅里叶变换算法计算 Y 的逆离散傅里叶变换。X 与 Y 的大小相同。
地址:https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
在进行频谱分析时,发现MATLAB和python读取wav文件的波形不一致,导致不能得出正确结果,为了验证MATLAB和python哪部分有问题,于是有了这篇博客。
其中,具体的拟合类型可以参看帮助文档,也可以使用fittype来自定义新的函数类型,比如定义拟合函数a*x+b*x^2+exp(4*x);|
作者:Krzysztof Pałczyński翻译:王闯(Chuck)校对:zrx 本文约1800字,建议阅读8分钟本文介绍了如何在小数据集上应用特征工程来提高机器学习模型的性能。 标签:数据科学、机器学习、特征工程 特征工程可以弥补数据的不足。 图片源自Unsplash,由Thomas T上传 在快速发展的人工智能 (AI) 世界中,数据已成为无数创新应用和解决方案的命脉。实际上,大型数据集通常被认为是训练强大且准确的 AI 模型的支柱。但是,当手头的数据集相对较小时该怎么办呢?在本文中,我们将探讨特
1.3. 内核岭回归 Kernel ridge regression (KRR) (内核岭回归)[M2012]_ 由 使用内核方法的 :ref:`ridge_regression`(岭回归)(使用 l2 正则化的最小二乘法)所组成。因此,它所学习到的在空间中不同的线性函数是由不同的内核和数据所导致的。对于非线性的内核,它与原始空间中的非线性函数相对应。 Screenshot (39).png 下图比较了人造数据集上的 KernelRidge 和 SVR 的区别,它由一个正弦目标函数和每五个数据点产生
无论是处理声音和图像信号,都必须用到傅立叶变换。其实除了这些“正经”用途,它还能做一些有意思的事情。
古代的勾三股四弦五中说的弦就是我们要说的正弦,也就是直角三角形中的斜边,叫做弦,股就是人的大腿,古人称直角三角形长的那个直角边就叫做股。
在自然语言处理(Natural Language Processing,NLP)领域,Transformer 模型因其在序列建模中的卓越性能而受到广泛关注。然而,Transformer 及在其基础之上的大语言模型(Large Language Models,LLMs)都不具备有效长度外推(Length Extrapolation)的能力。这意味着,受限于其训练时预设的上下文长度限制,大模型无法有效处理超过该长度限制的序列。
在统计研究中,常用按时间顺序排列的一组随机变量X1,X2,⋯,Xt,⋯来表示一个随机事件的时间序列,简记为{Xt,t∈T}。在时间的角度上来说,数据类型可分为两类:横截面数据和时间序列[1]。横截面数据是值在某一时间点搜集来自不同对象的数据,时间序列是一组按照时间排序的数据;横截面数据与时间序列的组合在计量经济学上构成了面板数据集。
本文是上一篇文章[Dynamic Movement Primitives与UR5机械臂仿真]的续文,目的在于介绍经典DMP的问题及其解决办法。同样地,所有的源代码均开源,详见Github:
对周期信号进行傅里叶变换(包括正弦周期和非正弦周期信号,正弦周期实际上利用正交性可以知道,除了对应的频率,其他谐波的积分都是0),可以将信号分解为一个无穷级数的和:
我们应该都学过三角函数吧,比如正弦函数,在最初接触到这方面的知识的时候,我们要求sin30°是不是要去查一个叫做“三角函数值查表”的东西,然后得出sin30° = 0.5。
傅立叶变换是许多应用中的重要工具,尤其是在科学计算和数据科学中。因此,SciPy 长期以来一直提供它的实现及其相关转换。最初,SciPy 提供了该scipy.fftpack模块,但后来他们更新了他们的实现并将其移到了scipy.fft模块中。
我们先讲讲锁相放大器的基本结构示于下方图 ,包括信号通道、参考通道、相敏检测器 PSD 和低通滤波器 LPF 等。 各个模块的基本功能描述如下:
一般而言,通过已有的数据点去推导其它数据点,常见的方法有插值和拟合。插值适用性较广,尤其是线性插值或样条插值已被广泛的应用。但是通过已知的函数去拟合数据,是连接理论与实验重要的桥梁,这一点是插值无法替代的。
str(x ) 将对象 x 转换为字符串 string
从How-Old.net说起 大家是否玩过How-Old.net呢? 这个网站能够推测出相片中人物的年龄与性别~ 好神奇~想知道它是如何实现的吗? 在它的背后,使用了人脸识别、 机器学习、
领取专属 10元无门槛券
手把手带您无忧上云