❝频谱图是Qt自绘系列的第9篇。1. 画音频数据的波形图。2. 以柱状图显示频谱数据。3. 具有动画效果。❞ 实现概要 1. 音频波形图截取每个16位音频数据绘制而成。 2....频谱图数据处理是使用FFT(快速傅里叶变换)实现。 3. 涉及到Qt动画类的知识。 系列相关: 1. Qt自绘系列-一堆甜甜圈 2. Qt自绘系列-透明时钟 3....Qt自绘系列-开关按钮 8.Qt自绘系列-饼图
FFT是在信号的重叠窗口部分上计算的,我们得到了所谓的频谱图。哇!需要接受很多东西。这里有很多事情要做。良好的视觉效果是必须的。 ? 您可以将频谱图视为一堆相互堆叠的FFT。...仅用几行代码,我们就创建了一个频谱图。好。我们对“频谱图”部分有扎实的了解,但对“MEL”则如何。他是谁? 梅尔(Mel)量表 研究表明,人类不会感知线性范围的频率。...Mel谱图 mel谱图是频率转换为mel标度的谱图。使用python的librosa音频处理库它只需要几行代码就可以实现。...我们将y轴(频率)转换为对数刻度,将颜色尺寸(幅度)转换为分贝,以形成频谱图。 我们将y轴(频率)映射到mel刻度上以形成mel频谱图。 听起来很简单,对吧?...好吧,虽然不尽然,但是我希望这篇文章能使你了解音频特征的处理和梅尔频谱图的原理。 作者:Leland Roberts deephub 翻译组
在本例中,提高频谱分辨率会导致加速和减速阶段的涂抹伪影增加。可以生成阶次图来避免这种权衡。...使用 RPM-阶次图可视化数据 函数 rpmordermap 为阶次分析生成阶次对 RPM 的频谱图。...阶次图可以更轻松地展示每个频谱分量与发动机速度的关系。与 RPM-频率图相比,涂抹伪影显著减少。 使用平均阶次谱确定峰值阶次 接下来,确定阶次图的峰值位置。...该函数接受 rpmordermap 生成的阶次图作为输入,并随时间对其求平均值。...分析峰值阶次随时间的变化 接下来,使用 ordertrack 求峰值阶次的幅值随时间的变化。
Python 频率分析和对数频谱 源代码 #!.../usr/bin/env python # -*- coding: utf-8 -*- # __author__ = "errrolyan" # Date: 19-02-12 # Describe =
2、基于Python的频谱分析 将时域信号通过FFT转换为频域信号之后,将其各个频率分量的幅值绘制成图,可以很直观地观察信号的频谱。 具体分析见代码注释。...长的取样时间 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)#两个正弦波叠加,156.25HZ和234.375HZ # N点FFT进行精确频谱分析的要求是...因此N点FFT能够完美计算频谱对取样对象的要求是n*Fs/N(n*采样频率/FFT长度), # 因此对8KHZ和512点而言,完美采样对象的周期最小要求是8000/512=15.625HZ,所以156.25...如果你放大其频谱中的两个峰值的部分的话,可以看到其值分别为: >>>xfp[10] -6.0205999132796251 >>>xfp[15] -9.6432746655328714e-16 即156.25Hz
频谱分析 下面是一组用于描述和解释信号属性的常用量(matlab的常见形式,python中的常见形式也类似): x: 采样的数据; n=length(x): 样本数量; fs: 采样频率(每单位时间或空间的样本数...找出一个信号在不同频率下的信息(可能是幅度、功率、强度或相位等)的作法就是频谱分析。 采样定理:采样频率要大于信号频率的两倍。 N个采样点经过FFT变换后得到N个点的以复数形式记录的FFT结果。...这表明,频谱分析得到的信号频率最大为 (N-1)*Fs/N,对频率的分辨能力是Fs/N。采样频率和采样时间制约着通过FFT运算能分析得到的信号频率上限,同时也限定了分析得到的信号频率的分辨率。...下面就用python案例进行说明 案例1 import numpy as np import pylab as pl import math # 采样频率 fs=1048 # 采样步长 t = [x...range(0,N)] Y = np.fft.fft(y)*2/N #*2/N 反映了FFT变换的结果与实际信号幅值之间的关系 absY = [np.abs(x) for x in Y] #求傅里叶变换结果的模
一.语法与参数介绍 spectrogram函数做短时傅立叶变换的频谱图。...二.频谱图的默认值 生成 N X = 1024 个由正弦曲线和组成的信号样本。正弦波的归一化频率为 2π/5 rad/sample 和 4π/5 rad/sample。...绘制频谱图。 s = spectrogram(x); spectrogram(x,'yaxis') 返回: 重复计算: 将信号分成不同长度的部分 nsc=[Nx/4.5]。...spectrogram(x,blackman(128),60,128,1e3) ax = gca; ax.YDir = 'reverse'; 返回: 四.频谱图和瞬时频率 使用频谱图功能测量和跟踪信号的瞬时频率...指定线性调频,使其频率最初为 100 Hz,一秒后增加到 200 Hz fs = 1000; t = 0:1/fs:2-1/fs; y = chirp(t,100,1,200,'quadratic'); 使用频谱图函数中实现的短时傅立叶变换来估计跳频的频谱
倒频谱定义 ---- 倒频谱可以分析复杂频谱图上的周期结构,分离和提取在密集调频信号中的周期成分,对于具有同族谐频、异族谐频和多成分边频等复杂信号的分析非常有效。...倒频谱变换是频域信号的傅立叶积分变换的再变换。...倒功率谱的开方即称幅值倒频谱,简称倒频谱。 简言之,倒频谱分析技术是将时域振动信号的功率谱对数化,然后进行逆傅里叶变化后得到的。...倒频谱的水平轴为“倒频率”的伪时间,垂直轴为对应倒频率的幅值,其计算公式为: ? 其中,是时域振动信号,是时域振动信号的功率谱,为时域振动信号的倒频谱。...倒频谱python案例 实现如下: from scipy.fftpack import fft, fftshift, ifft from scipy.fftpack import fftfreq import
答案是生成声音的机器学习模型 MelNet是通过一种叫做频谱图的技术实现的。而且实验表明,这个模型的性能高于此前曾红火一时的 SampleRNN 和 WaveNet 等模型。...当 WaveNet 和其他模型使用音频波形进行训练时,Facebook 的 MelNet 已经可以使用更多、包含更丰富信息的密集格式:频谱图。...建模频谱图可以简化捕获全局结构的任务,但是会削弱与音频保真度相关的局部特征的捕获。为了减少信息损失,我们对高分辨率频谱图进行了建模。...除此之外,为了捕获具有数十万个维度的频谱图中的局部和全局结构,我们采用了多尺度的方法,由粗略到精细的方式生成了频谱图。...该模型主要有两类 stack: Time-delayed stack: 综合历史所有频谱帧的信息 Frequency-delayed stack: 针对某一频谱帧,使用该帧中所有元素的信息,以及 time-dealyed
经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。...第一条什么意思呢,看看下面的图就明白了,它只能是下面这种情况: 这里面局部极值点有三个,而过零点有四个,相差一个是符合条件的。...在进行实验时,利用白噪声频谱均匀分布的特性,在待分析信号中加入白噪声,这样不同时间尺度的信号可以自动分离到与其相适应的参考尺度上去。 EEMD 是一种通过添加噪声进行辅助分析的方法。...EEMD 分解的流程图: EEMD 分解过程的主要步骤如下: ① 对于采集到的信号,首先加入具有正太分布的白噪声; ② 将加入白噪声后的混合信号作为一个整体,然后进行 EMD 经验模态分解...边际谱与傅里叶谱的比较 Matlab论坛cwjy 意义不同:边际谱从统计意义上表征了整组数据每个频率点的累积幅值分布,而傅里叶频谱的某一点频率上的幅值表示在整个信号里有一个含有此频率的三角函数组分。
Fs = framerate specgram(y, NFFT=1024, Fs=Fs, noverlap=900) show() 补充知识:matlab生成wav文件并用python验证 在进行频谱分析时...,发现MATLAB和python读取wav文件的波形不一致,导致不能得出正确结果,为了验证MATLAB和python哪部分有问题,于是有了这篇博客。...1、需求分析 用MATLAB生成一个正弦波并保存为wav文件,然后用python读取这个wav文件画出波形,查看python读取出来的波形和matlab生成的波形是否一致。...由上图可以看出MATLAB生成的正弦波保存为wav文件后,python读取该wav文件。两种语言下正弦波相同。...以上这篇Python 读取WAV音频文件 画频谱的实例就是小编分享给大家的全部内容了,希望能给大家一个参考。
#函数求本息 import math money = int(input(“请输入本金:”)) rate = float(input(“请输入年利率:”)) years = int(input(
该图中写出了追溯值的 图。 ? 割边的判定法则: 无向边x---y如果是桥,当且仅当搜索树上存在x的存在y满足 dfn[x]<low[y],说明从y出发不可能通过非搜索树边回到x。
#求球体数据 import math r = float(input(“请输入球的半径:”)) area = 4 * math.pi * math.pow(r, 2) volume = (4 /
参考:http://blog.csdn.net/abcjennifer/article/details/7584628
1 问题 如何利用python求二元一次方程的根? 2 方法 通过代码输入二元一次方程求出根证明提出的方法是有效的,能够解决开头提出的问题。...delta) x1=(-b根)/(2*a) x2=(-b根)/(2*a) print(“x1=”,x1,”t”,”x2=”,x2) 3 结语 针对使用Python...求二元一次方程的根的问题,本文提出以上方法,通过本次实验,证明该方法是有效的,本次实验的方法比较单一,可以通过未来的学习对该方法进行优化。
输出格式: 在一行中按照“product = F”的格式输出阶乘的值F,请注意等号的左右各有一个空格。题目保证计算结果不超过双精度范围。
2 绘制音调图 以时间(单位ms)为x轴,声压值为y轴,绘制音调图。...#[0ms, 114ms] 然后绘图 plot(timeArray, s1, color='k') ylabel('Amplitude') xlabel('Time (ms)') 3 绘制频谱图...频谱图也是一种很有用的图形表示方式。.../ n) plot(freqArray/1000, 10*log10(p), color='k') xlabel('Freqency (kHz)') ylabel('Power (dB)') 绘制的频谱图如下所示...如果直接对偏移量为零的正弦波求幅度的均值,它的正负部分相互抵消,结果为零。那我们先对幅度求平方,再开方(注意:开方加大了幅度极值的权重?)
方阵A求逆,先做LU分解。...A的逆等于U的逆乘于L的逆,L的逆就利用下三角矩阵求逆算法进行求解,U的逆可以这样求:先将U转置成下三角矩阵,再像对L求逆一样对U的转置求逆,再将得到的结果转置过来,得到的就是U的逆。...因此,关键是下三角矩阵的求逆。...1.下三角矩阵求逆算法 我利用的公式计算公式如下: 对角元素.png 对角元素以下的元素.png 我的代码如下: def triInverse(matA): ''' @author:zengwei 输入...接下来,利用上面的函数来进行矩阵的求逆。
python求平均值的方法:首先新建一个python文件;然后初始化sum总和的值;接着循环输入要计算平均数的数,并计算总和sum的值;最后利用“总和/数量”的公式计算出平均数即可。...本文操作环境:Windows7系统,python3.5版本,Dell G3电脑。 首先我们先来了解一下计算平均数的IPO模式. 输入:待输入计算平均数的数。...处理:平均数算法 输出:平均数 明白了程序的IPO模式之后,我们打开本地的python的IDE工具,并新建一个python文件,命名为test6.py....【推荐:python视频教程】 第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。 第三步,循环输入要计算平均数的数,并计算总和sum的值。
领取专属 10元无门槛券
手把手带您无忧上云