首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    迭代器与生成器

    这一部分待加强!                 (一)迭代器 一:简介     迭代是Python最强大的功能之一,是访问集合元素的一种方式。     迭代器是一个可以记住遍历的位置的对象。     迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。     迭代器只能往前不会后退。     迭代器有两个基本的方法:iter() 创建迭代器对象和 next()访问迭代器。     字典、字符串、列表或元组对象都可用于创建迭代器 二:迭代器的创建     ①把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__()     ②__iter__() 方法返回一个特殊的迭代器对象,     这个迭代器对象实现了 __next__() 方法     并通过 StopIteration 异常标识迭代的完成。     ③__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象 三:迭代器协议的后台机制     for element in (1, 2, 3):             print(element)     在后台,for 语句在容器对象中调用 iter() 。     该函数返回一个定义了 __next__() 方法的迭代器对象,它在容器中逐一访问元素。     没有后续的元素时, __next__() 抛出一个 StopIteration 异常,     通知 for 语句循环结束。     可以用内建的 next() 函数调用 __next__() 方法;     了解了迭代器协议的后台机制,就可以很容易的给自己的类添加迭代器行为。     定义一个 __iter__() 方法,使其返回一个带有 __next__() 方法的对象。     如果这个类已经定义了 __next__() ,那么 __iter__() 只需要返回 self: 三:迭代器使用的必要性     列表效率高,但是需要将内容一次性读入,可能增加内存的负担,     如果列表太大,内存溢出。     range 返回一个列表     xrange 返回一个对象                 (二)生成器 一:简介     ①在 Python 中,使用了 yield 的函数被称为生成器(generator)     跟普通函数不同的是,生成器是一个返回迭代器的函数,     只能用于迭代操作,更简单点理解生成器就是一个迭代器     ②在调用生成器运行的过程中,每次遇到 yield 时函数会暂停,     并保存当前所有的运行信息,返回 yield 的值,     并在下一次执行 next() 方法时从当前位置继续运行。 二:创建生成器     ①一个简单的生成器:my_generator = (x*x for x in range(4))     和列表解析式只是括号不同,大数据处理时代替列表解析式。     ②和return的区别:一般的函数都是止于return,作为生成器的函数,由于有了yield,     遇到他则会暂时挂起,如果之后还有return,则直接抛出StopIteration异常。 三:本节最后一句:编程中可以不使用生成器。

    04

    [译]PEP 525--异步生成器

    花下猫语: 与生成器密切相关的 PEP 有 4 个,在翻译完《PEP255--简单的生成器》之后,我在交流群里说出了继续翻译的想法。恰巧,@cxapython 同学正着迷于异步,被我激起了翻译的念头,他竟然一连翻译出两篇介绍异步的 PEP:《PEP 530--异步推导式》《PEP 525--异步生成器》。今天,我给大家转载了第二篇(为了我们的生成器系列),大家若觉得赞,可以关注一下他的公众号哦。至于我正在翻译的 PEP 342,由于里面纯文字的内容太多了(估计全文近7000字),加上我这周比较忙,只能再拖稿两天了。最后,小声透露一下,我建了个 github 项目,计划收集与推进 PEP 的翻译,欢迎给 star 和做贡献哦。地址:https://github.com/chinesehuazhou/peps-cn

    03
    领券