在进行遥感影像处理的时候,我们经常需要进行裁剪的工作,来看看如何使用GDAL工具进行这项操作吧!
在Python中使用opencv-python对图像进行缩放和裁剪非常简单,可以使用resize函数对图像进行缩放,使用对cv2.typing.MatLike操作,如img = cv2.imread(“Resources/shapes.png”)和img[46:119,352:495] 进行裁剪, 如有下面一副图像:
这是Python改变生活系列的第四篇,在上文中讲了一个需求的解决办法,即用python识别条形码来获取快递单号。
图像在我们日常生活中,可谓是随处都可见。智能手机的普及,让每个人都可以很方便的完成照片或视频的拍摄。虽然当前在手机上裁剪图片很方便,但是如果需要处理大量的图像,手工处理可能是很漫长、枯燥。让计算机去处理成千上万的的图片编辑,是最高效的方法。这回介绍一下使用Python如何完成图像裁剪。
在计算机图形学中,多边形裁剪是一个常用的技术,用于确定多边形与给定裁剪窗口之间的交集。通过裁剪,我们可以剔除不在裁剪窗口范围内的部分,从而减少图形处理的计算量,并加速渲染过程。 Python提供了各种库和算法来实现多边形裁剪。在本篇文章中,我们将使用shapely库来进行多边形的裁剪操作。shapely是一个Python库,提供了一些用于处理几何图形数据的功能。
本文介绍基于Python中ArcPy模块,基于矢量数据范围,对大量栅格遥感影像加以批量裁剪掩膜的方法。
对于这个需求,大家的第一反应可能是 PS,但 PS 用来干这件事情我觉得太“重”了,有没有更轻便的办法来实现呢?
在这篇文章里我们聊一下Python实现图片裁剪的两种方式,一种利用了Pillow,还有一种利用了OpenCV。两种方式都需要简单的几行代码,这可能也就是现在Python那么流行的原因吧。
编写Python程序,使用OpenGL实现用于直线裁剪的Cohen-Sutherland算法。
今天来实现一个利用Python的moviepy类库裁剪视频的功能。写这个功能的初衷是想批量的裁剪一下视频,下面一起来看一下代码吧!
https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/advanced/gradient_clip_cn.html
要实现上面的效果非常简单,我们只需要截取图片的九个区域即可。今天我们就要带大家使用Python来实现一下九宫格图片的生成。在开始之前,我们需要安装一下Pillow模块,语句如下:
本章开始学习Python图像处理,需要同学们理解如何使用Pillow来操作图像,实现格式转换,改变大小尺寸,裁剪,滤镜处理。
如果你想保护自己的原创图片,那最好的方式就是为图片添加盲水印,盲水印就是图片有水印但人眼看不出来,需要通过程序才能提取水印,相当于隐形“盖章”,可以用在数据泄露溯源、版权保护等场景。今天分享如何用 Python 为图片添加盲水印。
https://github.com/davidsandberg/facenet
本文介绍基于Python中ArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围,统一其各自行数与列数的方法。
反正我不是很熟,我只知道它很酷、很快、而且很厉害,不过好像也有很多缺陷。很酷很快很厉害我就不多说了,网上的彩虹屁多的和牛毛一样。我主要想说说几个问题,虽然这些问题可能只有我会遇到(意思是可能我安装的姿势不太对)。
我们经常会遇到一些对于多媒体文件修改的操作,像是对视频文件的操作:视频剪辑、字幕编辑、分离音频、视频音频混流等。又比如对音频文件的操作:音频剪辑,音频格式转换。再比如我们最常用的图片文件,格式转换、各个属性的编辑等。因为多媒体文件的操作众多,本文选取一些极具代表性的操作,以代码的形式实现各个操作。
上一篇的推文我们使用geopandas+plotnine 完美绘制高斯核密度插值的空间可视化结果,并提供了一个简单高效的裁剪方法,具体内容点击链接:Python-plotnine 核密度空间插值可视化绘制Python-plotnine 核密度空间插值可视化绘制。
專 欄 ❈ sunhaiyu,Python中文社区专栏作者 专栏地址: http://www.jianshu.com/u/4943cb2c6ea4 ❈ Python用Pillow(PIL)进行简单的图像操作 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值。在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R、G、B、A。整数的范围0~255。RGB全0就可以表示黑色,全255代表黑色。可以猜测(255, 0, 0, 255)代表红
最近有一个需求是将视频抽取为一个个的帧图片,使用python很方便实现,而且有多种方式;
最近笔者有个东西,需要上传的时候,让用户来裁剪图片,网上基本的做法,就是在本地的浏览器裁剪完毕,把裁剪后的坐标情况告诉服务器,让服务器来裁剪,因为笔者不是用PHP,无法享受GD模块的帮助了,所以利用python来裁剪。
SNAP软件使用Java语言开发,提供了Python接口snappy,官方教程中也多以Python接口进行示范。但是我在使用Python接口过程中,发现并不是很好用,你必须要同时懂Java语言才能很好地使用Python接口,在IDEA中使用Python接口的代码基本上没有提示,报错了也是Java的错误提示。而且,Java本来是运行在虚拟机上的语言,效率不高,再用Python包一层,更加降低了运行效率。
ArcPy可以让您访问ArcGIS Pro中的所有地理处理工具。在Python中,地理处理工具被称为地理处理工具。这个名称并不完全对应于工具标签,这是工具在ArcGIS Pro中显示的方式。工具名称通常与工具标签相同,但不包含空格。例如,数据管理工具箱中的AddField工具的名称是AddField in ArcPy。
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
给你一个下标从 0 开始的字符串数组 nums ,其中每个字符串 长度相等 且只包含数字。
在上面的例子中,我们使用open()函数打开了名为"image.jpg"的图像文件,并将其赋值给image变量。这样就可以在后续的代码中使用image对象进行图像处理。
从本期开始,我会陆续推出系列空间插值的推文教程,包括常见的「Kriging(克里金插值法)、Nearest Neighbor(最近邻点插值法)、Polynomial Regression(多元回归法)、Radial Basis Function(径向基函数法)」 等多种空间插值方法,探索空间可视化带给我们的视觉魅力。
在使用PyTorch进行深度学习任务时,我们经常会遇到类型错误(TypeError)的异常。这篇技术博客文章将着重讲解一个常见的TypeError异常:TypeError: clamp(): argument 'min' must be Number, not Tensor。我们将详细解释这个异常的原因,并提供一些解决办法。
不想去照相馆?担心肖像隐私被第三方获取?不会抠图?本文实现基于人工智能的一键自动抠图生成证件照。在进入正文之前,先看最终效果:
分类:python 作者:TTyb文章发表于 2016-11-12 百度指数抓取,再用图像识别得到指数前言: 土福曾说,百度指数很难抓,在淘宝上面是20块1个关键字: 哥那么叼的人怎么会被他吓到,于是乎花了零零碎碎加起来大约2天半搞定,在此鄙视一下土福 安装的库很多: 谷歌图像识别tesseract-ocr pip3 install pillow pip3 install pyocr selenium2.45 Chrome47.0.2526.106 m or Firebox32.0.1 chromedr
本系列课程是针对无基础的,争取用简单明了的语言来讲解,学习前需要具备基本的电脑操作能力,准备一个已安装python环境的电脑。如果觉得好可以分享转发,有问题的地方也欢迎指出,在此先行谢过。
我们都知道在canvas 可以通过clip来实现剪裁功能,其步骤一般是先设置要裁剪的区域(路径),然后通过ctx.clip()的实现裁剪,裁剪之后,后续的绘制只能在裁剪的区域显示效果,比如如下一段代码,实现了一个圆形裁剪:
上篇推文我们介绍了使用Python的plotnine、Basemap包对空间kde插值结果进行了可视化绘制,当然也包括了具体的插值过程,详细内容大家可以点击下方链接查看:Python-plotnine 核密度空间插值可视化绘制 、Python-Basemap核密度空间插值可视化绘制。
在翻以前oschina上写的博客的时候,看到这篇觉得还挺有趣的,就重新修改并添加一些新的内容发到再公号上。
实现方式:使用python-jira 依赖安装:pip install jira pillow
之前在工作中需要用仿射变换的方式来实现,用给定的bounding box(标注框)从一张
最近两个周,在MySQL方向的投入比较少,都是在看一些前人写的python脚本,之前使用python都是在django中写后端逻辑,对于python的脚本其实用的不多,今天再整理一些python脚本中使用的技巧吧。
前言 之前在工作中需要用仿射变换的方式来实现,用给定的bounding box(标注框)从一张图片 中扣出特定的区域,然后做旋转和缩放等特定操作。然后在网上搜索了一下与仿射变换相关的资料, 看了仿射变换的思想和一些例子,然后结合手头上的代码,做了一些实验,最后终于搞懂了如何实现。 实验代码(提供C++、Scala和Python三种语言的实现): 码云地址 Github地址 正文 根据给定的标注框从原图中裁剪出物体并且对裁剪出的图片做各种随机旋转和缩放变换, 如果这几个步骤
将转换成png后的图加载到软件中(专业软件ENVI5.3)查看结果详细信息如下图所示,成功的转换成png格式了。
缩略图方法 thumbnail(size) 的底层调用,不同的是,缩放不会改变原来数据。
上一篇文章,我们使用了Python 自定义IDW插值函数进行了IDW空间插值及可视化的plotnine、Basemap的绘制方法(Python - IDW插值计算及可视化绘制),本期推文我们将使用R-gstat进行IDW插值计算和使用ggplot2进行可视化绘制,主要涉及的知识点如下:
什么是白化?我在一年前也是头一次接触到这个词语,其实就是将你不需要的部分的等值线、等值线填色、风场、流场等挖去。目前气象领域流行的是花式利用地图shp文件进行操作,达到白化的目的。
上一篇博文Torch7深度学习教程1详细的讲述了Torch7的安装过程,本篇博文主要是讲述一下Torch7中的一些基本运算的语法,与Python的基本语法类似,加入你不是python的小白,本篇可以一
作者介绍: 叶成,数据分析师,就职于易居中国,热爱数据分析和挖掘工作,擅长使用Python倒腾数据。 在开始本位之前,这里先感谢一下本人公司的伟哥和孟哥(虽然孟哥也没帮上啥忙,但是以后有的是机会,哈哈)。 上次发了篇运用selenium自动截取百度指数并识别的文章,点这里《抓取百度指数引发的图像数字识别》,其实感觉也是有些投机取巧的意思在里面,而且正如大家所知,用selenium比较吃内存,而且因为要渲染网页,爬去效率也比较低。所以这次我们直接请求图片,通过抠图、拼接、再识别的方式来完成这个百度指数爬虫项目
前几天元旦, 用Python为自家公众号做了一个"革面"的活动页面,活动的效果非常好,分享一下实现过程 前端: BootStrap, Jquery, Jcrop 后端: Django, Pillow
对于GIS工作者而言,在ArcGIS中的很多工作往往不只用一个工具完成,往往是利用多个工具对数据进行一系列处理最后得到想要的数据。然而有些时候,需要大量的重复劳动!
向AI转型的程序员都关注了这个号👇👇👇 设计构思与创意 本作品以微信小程序为“个人”平台,用户可在微信小程序中录入必要的人脸等个人信息,并且能够以微信小程序为窗口查询自己的垃圾分类详情。为保证微信小程序的丰富性和人性化,用户可在小程序中通过拍照、语音、搜索等查询日常生活中常遇的生活垃圾,积累自己垃圾分类知识。在垃圾桶端,系统在用户授权情况下通过拍摄用户人脸信息匹配用户个人数据库,并记录其垃圾分类信息。此外,垃圾桶在本作品中充当“引导者”角色,用以引导用户将垃圾投掷到正确的垃圾桶中。在管理端,相关部门一方
领取专属 10元无门槛券
手把手带您无忧上云